解释下这段代码coeff变量是什么 为什么要从1开始 coeff = pywt.wavedec(data, wavelet, mode='per') sigma = Denoising.mad(coeff[-level]) uthresh = sigma * np.sqrt(2*np.log(len(data))) coeff[1:] = (pywt.threshold(i, value=uthresh, mode=thresh_mode) for i in coeff[1:]) return pywt.waverec(coeff, wavelet, mode='per')
时间: 2023-02-11 10:06:26 浏览: 163
代码说明1
这段代码使用了 PyWavelets 库,这是一个用于进行小波变换和逆小波变换的库。
变量 `coeff` 是小波系数,它是由 `pywt.wavedec()` 函数计算得出的。 `pywt.wavedec()` 函数可以将数据进行小波分解,按照不同的小波函数和模式,得到一个多级的小波系数列表。
`coeff` 从1开始,因为小波分解中第0级系数是原始信号的近似信号,而不是细节信号。 第1级开始的才是细节信号。
变量 `sigma` 是通过计算小波系数中最后一层的平均绝对偏差(MAD)得到的。
变量 `uthresh` 是基于 `sigma` 和数据长度计算得到的阈值。
在代码中使用了 `pywt.threshold()` 函数对小波系数进行阈值处理,将其中小于阈值的系数设置为0。最后返回 通过 `pywt.waverec()` 函数小波重构出的数据.
阅读全文