resnet cifar10
时间: 2024-12-25 21:23:11 浏览: 7
### 关于ResNet模型在CIFAR-10数据集上的实现
对于ResNet模型应用于CIFAR-10数据集的情况,通常会采用简化版本的ResNet架构来适应较小规模的数据集和图像尺寸。以下是基于PyTorch框架的一个简单示例代码片段用于训练ResNet模型:
```python
import torch
import torchvision.transforms as transforms
from torchvision.datasets import CIFAR10
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.optim as optim
from torchvision.models.resnet import resnet18
def prepare_data():
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = CIFAR10(root='./data', train=True, download=True, transform=transform_train)
testset = CIFAR10(root='./data', train=False, download=True, transform=transform_test)
trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
return trainloader, testloader
def create_model(num_classes=10):
model = resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
return model.cuda()
train_loader, test_loader = prepare_data()
model = create_model()
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
for epoch in range(20):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data[0].cuda(), data[1].cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Finished Training')
```
此代码展示了如何加载并预处理CIFAR-10数据集,创建一个未预先训练过的ResNet18网络结构,并对其进行编译与训练过程[^2]。
阅读全文