train_dir = "weibo21/data/train.txt" vocab_dir = "weibo21/data/vocab.pkl" pretrain_dir = "weibo21/data/sgns.sogou.char" emb_dim = 300 filename_trimmed_dir = "weibo21/data/embedding_SougouNews" if os.path.exists(vocab_dir): word_to_id = pkl.load(open(vocab_dir, 'rb')) else: # tokenizer = lambda x: x.split(' ') # 以词为单位构建词表(数据集中词之间以空格隔开) tokenizer = lambda x: [y for y in x] # 以字为单位构建词表 word_to_id = build_vocab(train_dir, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1) pkl.dump(word_to_id, open(vocab_dir, 'wb')) embeddings = np.random.rand(len(word_to_id), emb_dim) f = open(pretrain_dir, "r", encoding='UTF-8') for i, line in enumerate(f.readlines()): # if i == 0: # 若第一行是标题,则跳过 # continue lin = line.strip().split(" ") if lin[0] in word_to_id: idx = word_to_id[lin[0]] emb = [float(x) for x in lin[1:301]] embeddings[idx] = np.asarray(emb, dtype='float32') f.close() np.savez_compressed(filename_trimmed_dir, embeddings=embeddings)
时间: 2024-04-28 07:21:03 浏览: 210
这段代码的作用是:
- 定义了一些变量,例如 `train_dir` 存储训练数据的文件路径,`vocab_dir` 存储词表的路径,`pretrain_dir` 存储预训练词向量的路径,`emb_dim` 存储词向量的维度,`filename_trimmed_dir` 存储截断后词向量的路径。
- 判断词表文件是否存在,若存在则从文件中读取词表,否则根据训练数据构建词表并将其保存到文件中。
- 初始化一个随机的词向量矩阵 `embeddings`,其行数为词表的大小,列数为指定的词向量维度。
- 读取预训练词向量文件并将其加载到 `embeddings` 矩阵中,若预训练词向量中有某个词汇在词表中不存在,则该词汇的词向量使用随机值进行初始化。
- 将截断后的词向量矩阵保存到文件中。
相关问题
train_dir = "weibo21/data/train.txt" vocab_dir = "weibo21/data/vocab.pkl" pretrain_dir = "weibo21/data/sgns.sogou.char" emb_dim = 300 filename_trimmed_dir = "weibo21/data/embedding_SougouNews"
这段代码定义了一些变量,其作用如下:
- train_dir:指定训练数据的文件路径;
- vocab_dir:指定词表文件的路径;
- pretrain_dir:指定预训练词向量文件的路径;
- emb_dim:指定词向量的维度;
- filename_trimmed_dir:指定处理后的词向量文件的路径。
这些变量的设置是为了方便后续在训练模型时使用。具体来说,训练数据可以通过train_dir指定,词表可以通过vocab_dir指定,预训练词向量文件可以通过pretrain_dir指定,在训练过程中需要指定词向量维度,因此通过emb_dim进行设置,最后,处理后的词向量文件可以通过filename_trimmed_dir指定。
class Config(object): """配置参数""" def __init__(self, dataset, embedding): self.model_name = 'Transformer' self.train_path = dataset + '/data/train.txt' # 训练集 self.dev_path = dataset + '/data/dev.txt' # 验证集 self.test_path = dataset + '/data/test.txt' # 测试集 self.class_list = [x.strip() for x in open( dataset + '/data/class.txt', encoding='utf-8').readlines()] # 类别名单 self.vocab_path = dataset + '/data/vocab.pkl' # 词表 self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果 self.log_path = dataset + '/log/' + self.model_name self.embedding_pretrained = torch.tensor( np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\ if embedding != 'random' else None # 预训练词向量 self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
这是一个Python类,用于存储Transformer模型的参数配置。其中包括模型名称、训练集、验证集、测试集、类别名单、词表、模型保存路径、日志路径、预训练词向量和设备等参数。具体解释如下:
- model_name: 模型名称,这里设为Transformer。
- train_path: 训练集数据文件路径。
- dev_path: 验证集数据文件路径。
- test_path: 测试集数据文件路径。
- class_list: 类别名单,从数据集中读取,用于表示文本分类的类别。
- vocab_path: 词表文件路径,用于存储文本中出现的所有单词。
- save_path: 模型训练结果保存路径,用于存储训练好的模型参数。
- log_path: 日志路径,用于记录模型训练过程中的日志信息。
- embedding_pretrained: 预训练的词向量,可以使用预训练好的词向量来初始化模型的词嵌入层,提高模型性能。
- device: 设备,可以选择在GPU或CPU上运行模型。如果GPU可用,则使用GPU,否则使用CPU。
阅读全文