神经网络架构超参数如何设计: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152的架构是如何设计出来的? >卷积核大小,每一类卷积块个数,经过多少个卷积块降维 >除了人工调参之外,有没有更好的方法?

时间: 2024-04-25 22:11:49 浏览: 18
ResNet是由微软亚洲研究院提出的,其设计思路是通过残差连接来解决深度神经网络训练过程中梯度消失和梯度爆炸问题。ResNet-18/34/50/101/152的架构是基于ResNet基础模块的堆叠而来的,其中ResNet基础模块包括两种类型:普通的卷积块和残差块。 普通的卷积块是由两个3x3的卷积层组成,每个卷积层后面跟着一个批归一化层和一个激活函数层,然后将两个卷积层的输出相加作为该块的输出。 残差块则是由两个普通的卷积块和一个跨层连接组成。跨层连接可以是恒等映射或者1x1卷积层,其目的是将前一个卷积块的输出直接加到后一个卷积块的输出上,从而实现残差连接。 ResNet-18和ResNet-34是由多个不同深度的卷积块组成,每个卷积块的输出通道数都为64。ResNet-50/101/152是由多个残差块组成,其中ResNet-50由3个残差块组成,每个残差块包含3个普通的卷积块和一个跨层连接,其输出通道数逐渐增加。ResNet-101和ResNet-152的区别在于残差块的数量和输出通道数的大小。 在设计神经网络架构超参数时,除了人工调参之外,还可以使用自动化调参的方法,例如网格搜索、随机搜索、贝叶斯优化等。这些方法可以有效地搜索超参数空间,找到最优的超参数组合,从而提高模型的性能。
相关问题

resnet-18 架构

ResNet-18 是一种卷积神经网络架构,用于图像分类任务。它是由残差网络(ResNet)提出的一种基础模型。以下是 ResNet-18 的架构: 1. 输入层:接受输入图像的三个颜色通道(RGB)。 2. 卷积层1:使用64个大小为3x3的卷积核,步幅为1,padding为1,激活函数使用ReLU。它将输入图像的尺寸保持不变。 3. 残差块1:由两个卷积层组成,每个卷积层都有64个大小为3x3的卷积核。每个残差块都包含一个跳跃连接(shortcut connection),用于解决梯度消失的问题。 4. 残差块2:由两个卷积层组成,每个卷积层都有128个大小为3x3的卷积核。每个残差块都有一个下采样层(downsampling layer),通过步幅为2的卷积操作将特征图尺寸减半。 5. 残差块3:由两个卷积层组成,每个卷积层都有256个大小为3x3的卷积核。同样地,每个残差块都有一个下采样层。 6. 残差块4:由两个卷积层组成,每个卷积层都有512个大小为3x3的卷积核。同样地,每个残差块都有一个下采样层。 7. 平均池化层:对特征图进行全局平均池化,将特征图转换为向量。 8. 全连接层:将池化后的特征向量连接到一个输出大小为类别数的全连接层,用于预测图像的类别。 9. Softmax层:对类别概率进行归一化,得到最终的分类结果。 这就是 ResNet-18 的架构。它具有18个卷积和全连接层,其中包含了4个残差块。ResNet-18 在 ImageNet 数据集上表现良好,并且被广泛应用于计算机视觉任务中。

ResNet-18 网络模型是什么

ResNet-18 是一种深度残差网络,由微软研究院的 Kaiming He 等人提出。它有 18 层卷积神经网络结构,用于图像分类任务。ResNet-18 的主要特点是在网络中引入了残差模块,这些模块可以有效地缓解梯度消失问题,使得模型可以训练得更深,并且在相同参数量的情况下,比传统卷积神经网络有更好的性能。ResNet-18 的结构相对简单,适用于较小的数据集和计算资源,因此被广泛应用于计算机视觉领域。

相关推荐

最新推荐

recommend-type

使用Keras预训练模型ResNet50进行图像分类方式

主要介绍了使用Keras预训练模型ResNet50进行图像分类方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望