神经网络架构超参数如何设计: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152的架构是如何设计出来的? >卷积核大小,每一类卷积块个数,经过多少个卷积块降维 >除了人工调参之外,有没有更好的方法?
时间: 2024-04-25 08:11:49 浏览: 129
你想要的神经网络自动设计,谷歌大脑帮你实现了:用参数共享高效地搜索神经网络架构(ENAS) .html
ResNet是由微软亚洲研究院提出的,其设计思路是通过残差连接来解决深度神经网络训练过程中梯度消失和梯度爆炸问题。ResNet-18/34/50/101/152的架构是基于ResNet基础模块的堆叠而来的,其中ResNet基础模块包括两种类型:普通的卷积块和残差块。
普通的卷积块是由两个3x3的卷积层组成,每个卷积层后面跟着一个批归一化层和一个激活函数层,然后将两个卷积层的输出相加作为该块的输出。
残差块则是由两个普通的卷积块和一个跨层连接组成。跨层连接可以是恒等映射或者1x1卷积层,其目的是将前一个卷积块的输出直接加到后一个卷积块的输出上,从而实现残差连接。
ResNet-18和ResNet-34是由多个不同深度的卷积块组成,每个卷积块的输出通道数都为64。ResNet-50/101/152是由多个残差块组成,其中ResNet-50由3个残差块组成,每个残差块包含3个普通的卷积块和一个跨层连接,其输出通道数逐渐增加。ResNet-101和ResNet-152的区别在于残差块的数量和输出通道数的大小。
在设计神经网络架构超参数时,除了人工调参之外,还可以使用自动化调参的方法,例如网格搜索、随机搜索、贝叶斯优化等。这些方法可以有效地搜索超参数空间,找到最优的超参数组合,从而提高模型的性能。
阅读全文