假设bin文件的格式如下: | Sector Header | Block 1 Header | Block 1 Data | Block 2 Header | Block 2 Data | ... | 其中, Sector Header和Block Header的结构如下: Sector Header: | 2 Bytes | 1 Bytes | 3 Bytes | 2 Bytes | |Pattern | Sector State | Sector change counter | Checksum |, Block Header: | 3 Bytes | 1 Bytes | 2 Bytes | 2 Bytes | 2 Bytes |4 Bytes | | Preamble | Block ID | Persistent ID | User data length | HeaderCrc | BlockCrc |,一般Sector Header是以0xCAFE开头,Block Header是以0xA53C96开头,0xCAFE和0xA53C96都需要解析,针对Flash EEPROM Emulation,给一个二进制bin文件,如何通过自动化脚本来解析所有的Block Header区块,如Block Header里6段字节的解析结果包括Block Header中所有用户数据的解析结果都输出(共7个部分),用python实现

时间: 2023-06-12 15:08:21 浏览: 134
首先,我们需要读取二进制文件,并将其转换为可处理的字节数组。以下是读取文件并将其转换为字节数组的示例代码: ```python with open('file.bin', 'rb') as f: data = bytearray(f.read()) ``` 接下来,我们可以定义Sector Header和Block Header的结构体,并使用Python的struct模块来解析它们。 ```python import struct # 定义Sector Header结构体 sector_header_struct = struct.Struct('<H B 3s H') # 定义Block Header结构体 block_header_struct = struct.Struct('<3s B H H H I') # 解析Sector Header sector_header = sector_header_struct.unpack_from(data, 0) # 解析Block Header block_header_offset = 0x10 # 假设第一个Block Header的偏移量为0x10 block_header = block_header_struct.unpack_from(data, block_header_offset) ``` 接下来,我们需要解析Block Header中的用户数据。根据Block Header中的User data length字段,我们可以确定用户数据的长度,并从字节数组中提取出来。然后,我们可以使用struct模块来解析用户数据。 ```python # 解析用户数据 user_data_offset = block_header_offset + block_header_struct.size user_data_length = block_header[3] user_data = data[user_data_offset:user_data_offset + user_data_length] # 解析用户数据结构体 user_data_struct = struct.Struct('<H I') user_data_values = user_data_struct.unpack(user_data) ``` 最后,我们可以将所有的解析结果输出。 ```python # 输出所有解析结果 print('Sector Header:', sector_header) print('Block Header:', block_header) print('User Data:', user_data_values) ``` 将以上代码整合在一起,就可以实现自动化脚本来解析所有的Block Header区块了。完整代码如下: ```python import struct # 定义Sector Header结构体 sector_header_struct = struct.Struct('<H B 3s H') # 定义Block Header结构体 block_header_struct = struct.Struct('<3s B H H H I') # 读取二进制文件 with open('file.bin', 'rb') as f: data = bytearray(f.read()) # 解析所有Block Header block_header_offset = 0x10 # 假设第一个Block Header的偏移量为0x10 while True: block_header = block_header_struct.unpack_from(data, block_header_offset) # 如果Block Header不以0xA53C96开头,说明已经解析完所有Block Header if block_header[0] != b'\xa5\x3c\x96': break # 解析用户数据 user_data_offset = block_header_offset + block_header_struct.size user_data_length = block_header[3] user_data = data[user_data_offset:user_data_offset + user_data_length] # 解析用户数据结构体 user_data_struct = struct.Struct('<H I') user_data_values = user_data_struct.unpack(user_data) # 输出所有解析结果 print('Block Header:', block_header) print('User Data:', user_data_values) # 计算下一个Block Header的偏移量 block_header_offset += block_header_struct.size + user_data_length ```
阅读全文

相关推荐

Ubuntu 系统体积较大,通常在Nvme或者SATA硬盘上进行安装,两者方法类似,只有设备名不同,由于开发板自带Nvme盘,这里以Nvme盘为例进行描述。 首先,按照3.1~3.4方法制作好的U盘并进行启动。进入Linux系统后对nvme盘进行分区。分为两个区,分区1大小约500M,放内核与设备树,分区大小可以自己定义,只要可以放下内核设备树即可,其余空间分区2放置解压缩后的rootfs。 首先我们使用fdisk命令进行分区 1.# fdisk /dev/nvme0n1 分区完成后结果如下: 1.root@E2000-Ubuntu:~# fdisk -l /dev/nvme0n1 2.Disk /dev/nvme0n1: 232.91 GiB, 250059350016 bytes, 488397168 sectors 3.Disk model: Samsung SSD 980 250GB 4.Units: sectors of 1 * 512 = 512 bytes 5.Sector size (logical/physical): 512 bytes / 512 bytes 6.I/O size (minimum/optimal): 512 bytes / 512 bytes 7.Disklabel type: dos 8.Disk identifier: 0x00000000 9. 10.Device Boot Start End Sectors Size Id Type 11./dev/nvme0n1p1 2048 1026047 1024000 500M 83 Linux 12./dev/nvme0n1p2 1026048 488397167 487371120 232.4G 83 Linux 13.root@E2000-Ubuntu:~# 两个分区均格式化为ext4: 1.# mkfs.ext4 /dev/nvme0n1p1 2.# mkfs.ext4 /dev/nvme0n1p2 复制文件 1.# mkdir /mnt1 2.# mount /dev/nvme0n1p1 /mnt 3.# mount /dev/sda1 /mnt1 4.# cp /mnt1/* /mnt 5.# sync 6.# umount /dev/sda1 /dev/nvme0n1p1 7.# mount /dev/nvme0n1p2 /mnt 8.# cd /mnt 9.# tar xvf /rootfs-ubuntu.tar 10.# sync 11.# cd ~ 12.# umount /dev/nvme0n1p2 硬重启E2000参考板,进入Uboot,使用如下命令从NVME启动 1.setenv bootargs console=ttyAMA1,115200 audit=0 earlycon=pl011,0x2800d000 root=/dev/nvme0n1p2 rootdelay=5 rw; 2.ext4load nvme 0:1 0x90100000 Image; 3.ext4load nvme 0:1 0x90000000 e2000q-demo-board.dtb; 4.booti 0x90100000 - 0x90000000 或在Uboot设置环境变量,自动从NVME启动系统 1.setenv bootargs ‘console=ttyAMA1,115200 audit=0 earlycon=pl011,0x2800d000 root=/dev/nvme0n1p2 rw’; 2.setenv bootcmd "ext4load nvme 0:1 0x90100000 Image; ext4load nvme 0:1 0x90000000 e2000q-demo-board.dtb; booti 0x90100000 -:- 0x90000000"; 3.saveenv;

最新推荐

recommend-type

恋练有词纯单词顺序Unit1-Unit30.docx

【恋练有词纯单词顺序Unit1-Unit30.docx】是一个专为英语学习者设计的文档,包含了从高频到低频的单词列表,旨在帮助用户系统地背诵和检验单词记忆效果。这个资源涵盖了多个主题,可以提升词汇量,并在日常交流、...
recommend-type

exFAT文件系统结构分析.docx

1. 引导扇区(Boot Sector) exFAT的启动扇区,也称为DBR(Disk Boot Record),是文件系统的起始点。它包含了文件系统的重要信息,如文件系统类型、簇大小、根目录位置等。DBR中的Volume Boot Record (VBR)部分...
recommend-type

FLASH、EEPROM、FRAM的详细特征对比.docx

- **擦写方式**:Flash存储器通常采用页(Page)和块(Block)的擦写机制。一次擦除操作通常涉及一个扇区(Sector),由多个页组成,而一个块包含多个扇区。 - **擦写次数**:理论上的擦写寿命在10万到100万次之间...
recommend-type

LTE华为后台U2000操作指导书2017整理.docx

1. eNodeB MML常用命令:这些命令用于配置和查询eNodeB的参数,如小区设置、功率控制、无线资源管理等。 2. 机房操作命名解析:对MML命令的理解和正确使用是关键,包括了解命令的结构、参数含义及执行结果。 在小区...
recommend-type

oracle linux7.2 安装oracle 11.2.0.4全过程图文附各种bug解决方案

1", SUBSYSTEM=="block", PROGRAM=="/usr/lib/udev/scsi_id -g -u -d /dev/$parent", RESULT=="36000c2909828cac1b0ed9a17212b4f1f", SYMLINK+="asmdisk1", OWNER="oracle", GROUP="dba", MODE="0660" ``` 最后,...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。