densenet,测试代码pytorch实现
时间: 2024-10-18 07:01:55 浏览: 21
DenseNet pytorch代码
DenseNet,全称为密集连接网络(Densely Connected Convolutional Networks),是由Gao Huang等人于2016年提出的深度学习模型。它的一个显著特点是前一层的输出作为输入直接馈送到下一层,这样每个层都能利用到前面所有层的信息,增加了信息流动和特征复用,有助于解决梯度消失问题并加速训练。
在PyTorch中实现DenseNet的基本步骤包括:
1. 导入必要的库:
```python
import torch
import torch.nn as nn
from torch.nn import functional as F
```
2. 定义基础块(Basic Block):
```python
class BasicBlock(nn.Module):
def __init__(self, in_channels, growth_rate):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(growth_rate)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(growth_rate, growth_rate, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(growth_rate)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
return torch.cat([x, out], 1) # Concatenate along the channel dimension
```
3. 实现DenseNet结构:
```python
class DenseNet(nn.Module):
def __init__(self, num_blocks, growth_rate, num_classes):
super(DenseNet, self).__init__()
self.growth_rate = growth_rate
self.num_classes = num_classes
self.features = self.create_dense_layers(num_blocks, num_classes)
self.classifier = nn.Linear(num_features * growth_rate, num_classes)
def create_dense_layers(self, num_blocks, num_classes):
layers = []
in_channels = 2 * growth_rate # Initial channels for first block
for _ in range(num_blocks):
layers.append(BasicBlock(in_channels, growth_rate))
in_channels += growth_rate
layers.append(nn.Conv2d(in_channels, num_classes, kernel_size=1)) # Output layer
return nn.Sequential(*layers)
def forward(self, x):
features = self.features(x)
out = F.avg_pool2d(features, features.size()[2:])
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
```
阅读全文