t = [] t.append(transforms.ToTensor()) t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)) preprocess = transforms.Compose(t)。t=【】该输入什么
时间: 2024-03-30 20:41:06 浏览: 64
在这里,t代表一个空的列表,我们可以通过向其中添加transforms来构建一个transforms列表,最终通过transforms.Compose将它们串联起来形成一个数据预处理的pipeline。在这个例子中,我们向t列表中添加了两个transforms:ToTensor和Normalize。ToTensor将图像转换为PyTorch张量,Normalize对张量进行归一化,使用了ImageNet数据集的默认均值和标准差。因此,如果要使用这个数据预处理pipeline,需要将原始图像先转换为PIL格式,然后将其传递给preprocess函数进行预处理。
相关问题
# transforms t = [] t.append(transforms.ToTensor()) t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)) preprocess = transforms.Compose(t)
这段代码是在使用 PyTorch 中的 `transforms` 模块进行图像预处理,其中 `ToTensor()` 函数将图像转换为 PyTorch 的 Tensor 格式,`Normalize()` 函数将其进行归一化处理。最终使用 `Compose()` 函数将这两个预处理操作组合起来,生成一个预处理的函数 `preprocess`。
如果你在之前的代码中已经将图像转换为了 Tensor,那么可以将 `ToTensor()` 函数从预处理中删除,只使用 `Normalize()` 函数进行归一化处理。如果你需要将图像转换为 Tensor,那么可以按照以下方式修改代码:
```
t = []
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
preprocess = transforms.Compose(t)
```
这样,你就可以将 `preprocess` 函数作为图像预处理的函数,将其应用于输入图像。
修改以下代码使其能够输出模型预测结果: def open_image(self): file_dialog = QFileDialog() file_paths, _ = file_dialog.getOpenFileNames(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)") if file_paths: self.display_images(file_paths) def preprocess_images(self, image_paths): data_transform = transforms.Compose([ transforms.CenterCrop(150), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) self.current_image_paths = [] images = [] for image_path in image_paths: image = Image.open(image_path) image = data_transform(image) image = torch.unsqueeze(image, dim=0) images.append(image) self.current_image_paths.append(image_path) return images def predict_images(self): if not self.current_image_paths: return for i, image_path in enumerate(self.current_image_paths): image = self.preprocess_image(image_path) output = self.model(image) predicted_class = self.class_dict[output.argmax().item()] self.result_labels[i].setText(f"Predicted Class: {predicted_class}") self.progress_bar.setValue((i+1)*20) def display_images(self, image_paths): for i, image_path in enumerate(image_paths): image = QImage(image_path) image = image.scaled(300, 300, Qt.KeepAspectRatio) if i == 0: self.image_label_1.setPixmap(QPixmap.fromImage(image)) elif i == 1: self.image_label_2.setPixmap(QPixmap.fromImage(image)) elif i == 2: self.image_label_3.setPixmap(QPixmap.fromImage(image)) elif i == 3: self.image_label_4.setPixmap(QPixmap.fromImage(image)) elif i == 4: self.image_label_5.setPixmap(QPixmap.fromImage(image))
请注意,代码中的 preprocess_images 函数和 predict_images 函数中的 self.preprocess_image(image_path) 需要修改为 self.preprocess_images([image_path])。修改后的代码如下:
```
def open_image(self):
file_dialog = QFileDialog()
file_paths, _ = file_dialog.getOpenFileNames(self, "选择图片", "", "Image Files (*.png *.jpg *.jpeg)")
if file_paths:
self.display_images(file_paths)
def preprocess_images(self, image_paths):
data_transform = transforms.Compose([
transforms.CenterCrop(150),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.current_image_paths = []
images = []
for image_path in image_paths:
image = Image.open(image_path)
image = data_transform(image)
image = torch.unsqueeze(image, dim=0)
images.append(image)
self.current_image_paths.append(image_path)
return images
def predict_images(self):
if not self.current_image_paths:
return
for i, image_path in enumerate(self.current_image_paths):
image = self.preprocess_images([image_path])
output = self.model(image[0])
predicted_class = self.class_dict[output.argmax().item()]
self.result_labels[i].setText(f"Predicted Class: {predicted_class}")
self.progress_bar.setValue((i+1)*20)
def display_images(self, image_paths):
for i, image_path in enumerate(image_paths):
image = QImage(image_path)
image = image.scaled(300, 300, Qt.KeepAspectRatio)
if i == 0:
self.image_label_1.setPixmap(QPixmap.fromImage(image))
elif i == 1:
self.image_label_2.setPixmap(QPixmap.fromImage(image))
elif i == 2:
self.image_label_3.setPixmap(QPixmap.fromImage(image))
elif i == 3:
self.image_label_4.setPixmap(QPixmap.fromImage(image))
elif i == 4:
self.image_label_5.setPixmap(QPixmap.fromImage(image))
```
阅读全文