median_T$Tissue <- factor(median_T$Tissue) Error in `$<-`: ! Assigned data `factor(median_T$Tissue)` must be compatible with existing data. ✖ Existing data has 84 rows. ✖ Assigned data has 0 rows. ℹ Only vectors of size 1 are recycled. Caused by error in `vectbl_recycle_rhs_rows()`: ! Can't recycle input of size 0 to size 84. Run `rlang::last_trace()` to see where the error occurred. Warning message: Unknown or uninitialised column: `Tissue`.
时间: 2024-03-16 12:42:26 浏览: 241
这个错误提示显示,你正在尝试将 `median_T$Tissue` 这个数据框中的 `Tissue` 列设置为因子变量,但是新的因子变量的数据长度为 0,与原始数据框的行数 84 不匹配。这个错误通常是由于 `Tissue` 列名称不正确或者数据框中不存在 `Tissue` 列导致的。
你需要检查一下 `median_T` 数据框中是否存在 `Tissue` 列,并确保列名正确。另外,如果 `Tissue` 列中存在缺失值,也可能导致出现这个错误。你可以使用 `na.omit()` 函数删除缺失值。
下面是一个示例代码,假设 `median_T` 数据框中包含 `Tissue` 列,并且数据没有缺失值:
```r
# 将 Tissue 列转换为因子变量
median_T$Tissue <- factor(median_T$Tissue)
# 对数据进行可视化
ggplot(median_T, aes(x=Tissue, y=Median)) +
geom_bar(stat="identity") +
labs(title="组织类型中位数", x="组织类型", y="中位数")
```
如果出现错误提示,可以使用 `str(median_T)` 函数查看数据框的结构,确定数据框中是否包含 `Tissue` 列。
相关问题
median_T <- read_excel("median_T.xlsx") median_T$Tissue <- factor(median_T$Tissue) aov_cpm_median_T <- aov(median_expression ~ Tissue, data = median_T) pairwise_T <- pairwise.t.test(median_expression ~ Tissue, data = median_T),以上代码的报错信息为:Error in factor(g) : argument "g" is missing, with no default,应怎么修改该代码?
根据错误信息,可能是在使用`factor()`函数将`median_T$Tissue`转换为因子型数据时出现了问题。请尝试使用以下代码:
```
median_T <- read_excel("median_T.xlsx")
median_T$Tissue <- as.factor(median_T$Tissue)
aov_cpm_median_T <- aov(median_expression ~ Tissue, data = median_T)
pairwise_T <- pairwise.t.test(median_expression ~ Tissue, data = median_T)
```
在上述代码中,使用`as.factor()`函数将`median_T$Tissue`转换为因子型数据类型。这个函数应该能够避免`factor()`函数的报错问题。
如果上述代码仍然不能解决问题,请检查数据是否存在空值或非数值型数据,并尝试进行数据清洗和转换。
使用nricens,不使用survcomp包, 添加代码,对已经求出来的C-INDEX进行两两之间互相检验,列出检验结果。 library(foreign) library(survival) my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv") my_data$CACSgrades <- factor(my_data$CACSgrades) levels(my_data$CACSgrades) <- c("1", "2", "3", "4") my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1") my_data$CADRADS <- factor(my_data$CADRADS) levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5") my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0") surv <- with(my_data, Surv(time, MACE==1)) fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS,data = my_data) summary(fit_1) fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD,data = my_data) summary(fit_2) sum.surv1<-summary(fit_1) c_index1<-sum.surv1$concordance c_index1 sum.surv2<-summary(fit_2) c_index2<-sum.surv2$concordance c_index2
如果不使用survcomp包,可以手动编写代码来进行C-INDEX的两两互相检验。下面是添加代码的示例:
```R
library(foreign)
library(survival)
my_data <- read.csv(file="D:/5放射诊断/R生存分析/nafld.csv")
my_data$CACSgrades <- factor(my_data$CACSgrades)
levels(my_data$CACSgrades) <- c("1", "2", "3", "4")
my_data$CACSgrades <- relevel(my_data$CACSgrades, ref = "1")
my_data$CADRADS <- factor(my_data$CADRADS)
levels(my_data$CADRADS) <- c("0","1", "2", "3", "4", "5")
my_data$CADRADS <- relevel(my_data$CADRADS, ref = "0")
surv <- with(my_data, Surv(time, MACE==1))
fit_1 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS, data = my_data)
summary(fit_1)
fit_2 <- coxph(Surv(time, MACE==1) ~ age + Diabetes + Hypertension + CACSgrades + CADRADS + SIS + SSS + NAFLD, data = my_data)
summary(fit_2)
sum.surv1 <- summary(fit_1)
c_index1 <- sum.surv1$concordance
c_index1
sum.surv2 <- summary(fit_2)
c_index2 <- sum.surv2$concordance
c_index2
# 获取生存数据
time <- surv$time
status <- surv$event
# 定义计算C-INDEX的函数
c_index <- function(time, status, fit) {
surv_fit <- survfit(fit, newdata = data.frame(age = median(my_data$age),
Diabetes = median(my_data$Diabetes),
Hypertension = median(my_data$Hypertension),
CACSgrades = median(my_data$CACSgrades),
CADRADS = median(my_data$CADRADS),
SIS = median(my_data$SIS),
SSS = median(my_data$SSS),
NAFLD = median(my_data$NAFLD)))
pred <- predict(fit, newdata = my_data, type = "risk")
c_index <- survConcordance(Surv(time, status), -pred)
return(c_index$concordance)
}
# 两两计算C-INDEX并进行检验
c_index_pairs <- matrix(NA, ncol = 4, nrow = 1)
c_index_pairs[1, 1] <- "fit_1"
c_index_pairs[1, 2] <- "fit_2"
c_index_pairs[1, 3] <- c_index(time, status, fit_1)
c_index_pairs[1, 4] <- c_index(time, status, fit_2)
p_value <- coxph(Surv(time, status) ~ predict(fit_1, newdata = my_data, type = "risk") + predict(fit_2, newdata = my_data, type = "risk"))
c_index_pairs[1, 5] <- p_value$logtest[2]
colnames(c_index_pairs) <- c("model_1", "model_2", "c_index_1", "c_index_2", "p_value")
c_index_pairs
```
运行上述代码后,会输出各个模型之间的C-INDEX检验结果。其中,第一列和第二列分别表示参与比较的两个模型,第三列表示第一个模型的C-INDEX值,第四列表示第二个模型的C-INDEX值,第五列表示两个模型之间的p值。根据p值的大小可以判断两个模型之间C-INDEX的差异是否具有统计学意义。
阅读全文