lstm模型中使用weight decay的代码
时间: 2024-01-08 11:09:42 浏览: 114
lstm图像分类_lstm图像处理_
5星 · 资源好评率100%
在LSTM模型中,通常使用L2正则化来实现weight decay。在PyTorch中,可以通过optimizer的weight_decay参数来实现。以下是一个示例代码:
```python
import torch.nn as nn
import torch.optim as optim
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
model = LSTMModel(input_size=10, hidden_size=20, num_layers=2, output_size=1)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001)
```
在上面的代码中,我们使用了Adam优化器,并将weight_decay参数设置为0.0001来实现L2正则化。可以根据需要调整weight_decay的值。
阅读全文