首页
以降重的方式表达协同过滤推荐算法的国内外研究现状
以降重的方式表达协同过滤推荐算法的国内外研究现状
时间: 2023-11-25 18:07:29
浏览: 146
协同过滤推荐算法是一种常见的推荐算法,目前在国内外都有很多研究。国内相关研究主要集中在算法本身以及应用方面,例如在电子商务、社交网络等领域中的推荐应用。而国外相关研究则包括更多的理论和方法方面的研究,例如对协同过滤算法结构、性能、效率等方面的分析和优化。总体来说,协同过滤算法在国内外都有广泛的研究和应用,并且不断有新的改进和发展。
阅读全文
相关推荐
基于协同过滤的推荐算法研究.caj
【摘要】 W.eb2.0技术将互联网带入了一个崭新的时代,互联网用户在互联网生活中发挥着越来越主动的作用,用户不再只是被动地从互联网上接受信息,而是主动地创造信息,并利用Web2.0平台与其他用户进行交互和分享。随着互联网用户的飞速增长,以用户为中心的信息生产模式造成了互联网信息的爆炸式增长,人们正面临着越来越严重的“信息过载”问题。“信息过载”问题是指,人们无法从海量的信息中快速准确的定位到自己所需要的信息。目前,解决信息过载问题的技术主要分两类,第一类是以搜索引擎为代表的信息检索技术,第二类是以推荐系统为代表的信息过滤技术。两者最重要的区别在于用户通过搜索引擎获取的信息的质量的好坏在很大程度上依赖于用户对于信息求描述的准确程度,而推荐系统不需要用户提供明确的需求,而是从用户的历史行为和数据中出发,建立相关的模型从而挖掘出用户的需求和兴趣,从而以此为依据从海量的信息中为用户筛选出用户感兴趣的信息。由此可见,在用户需求不明确时,推荐系统的作用显得尤为重要。到目前为止,已经有许多推荐算法被提出,协同过滤是这些算法中应用最多且最为有效的推荐算法。虽然协同过滤算法已经被成功地应用到许多商业推荐系统中,但是仍然存在着诸如数据稀疏问题、冷启动问题等亟待解决。随着互联网的飞速发展,以微博为代表的各种社交媒体纷纷涌现,以用户为中心的社交网站产生了海量的和用户兴趣相关的数据,如何有效的利用这些数据来改进推荐算法的性能已经成为一个重要的研究领域。针对以上关键问题,本文展开了如下几个方面的研究。第一,协同过滤中相似度模型的研究。用户(项目)相似度计算是基于内存的协同过滤算法中最为关键的问题,正负标注信息不对称和数据稀疏性导致了传统的相似度模型不准确从而影响推荐精度。本文针对这两个问题,提出了基于变权重和罚函数的用户相似度模型。实验结果表明,本文提出的算法能够有效缓解上述两个问题,从而提高推荐精度。第二,融合社交网络信息的协同过滤算法研究。丰富的社交网络信息给推荐系统带来的新的机遇也提出了更大的挑战,如何有效地挖掘海量的社交网络信息以提高推荐算法的精度是社交网络推荐系统研究的核心问题。本文基于腾讯微博用户的真实社交网络信息,构建有效的用户相似度模型,并将该相似度模型与基于评价矩阵信息的用户相似度模型相结合,提出了融合社交网络信息的协同过滤算法。实验结果表明,通过融合社交网络信息,数据稀疏问题得到了明显缓解且推荐精度显著提高。第三,基于用户与基于项目的融合协同过滤算法的研究。根据不同的假设,协同算法可以分为基于用户的方法与基于项目的方法。本文研究了两种方法在推荐性能与效果上的本质差别,并在此基础上针对两种方法的优缺点进行模型融合,提出了融合基于用户和基于项目的融合协同过滤算法。实验结果表明,基于用户的方法更擅长于热门推荐而基于项目的方法更擅长于长尾推荐,本文提出的模型融合算法能有效的缓解数据稀疏问题并提高算法精度。第四,协同过滤算法中的全局模型融合与局部模型融合研究。目前存在着许多有效的协同过滤算法(例如基于内存的方法与基于模型的方法、基于用户的方法与基于项目的方法),不同的算都具有各自的优势和缺陷。本文提出了不同的方法对于不同的用户(项目)的适用程度不一致的观点。基于上述观点,本文通过机器学习的方法,自动发现用户(项目)对于各种方法的适应程度,并进行局部模型融合。实验结果表明,局部融合模型比全局融合模型具有更高的推荐精度。 还原 【Abstract】 The fast development of Web2.0technology sparked a new revolution of the in-ternet. Users now play a new role in the world of internet, they take the initiative to generate information instead of simply getting information from the web. As the rapid growth of the users’population, the user-centric information generation mode leads to the exponential growth of the available information in internet, which cause the infor-mation overload problem. The information overload problem refers that people can not quickly and accurately locate the information they need. Currently, the technology to solve information overload problem can be classified into to two categories. The first technology is information retrieval represented by the search engine and the second is information filtering represented by recommender systems. The most important differ-ence between these two technologies is that search engines need queries formatted by the user and recommender systems need no queries. Thus the quality of the results of search engines depend on how users describe their information needs. Recommender systems however, filter out the information that the user is interested in by exploiting users’profile data and historical activities(watching,listening,buying etc.). So, recom-mender systems can play an very important role in the situation that uses’can not tell their information need precisely.Many recommendation algorithms have been proposed by both academia and in-dustry, collaborative filtering is one of the most effective recommendation algorithms. Collaborative filtering algorithm has been successfully applied to many commercial recommender system, but there are still issues such as the data sparsity problem and the cold start problem to be solved. With the rapid rise of social media, user-centric social networking web sites generate vast amounts of data which may reflects users’interests, how to leverage these data to improve the performance of the recommendation algorith-m has become a very hot research area. In view of the above key issues, this dissertation launched a study of the following aspects.First, research on the similarity model of collaborative filtering. User/item simi-larity calculation is the most critical issue in the memory-based collaborative filtering algorithms, sparsity of the rating matrix and unbalance of negative and positive ratings causes inaccurate similarity computation, thus limit the recommendation quality. In this dissertation, we introduce a weighting scheme and a penalty function to address the above issue. Experiment results show that improved similarity model can significantly improve the recommendation accuracy.Second, Integrating social information into collaborative filtering. The rich social information brings great opportunities for recommendation system. How to effectively leverage the abundant social network information to improve the accuracy of recom-mendation systems is the core issue of the research on social recommendation systems. In this dissertation, we build an user similarity model based on Tencent micro-blogging users’ real social network information, and effectively combine the social information based similarity model and the rating information based similarity model. Experiment results show that the proposed approach can effectively ease the data sparsity problem and improve the recommendation quality.Third, combining user-based and item-based collaborative algorithms using stacked regression. Collaborative filtering algorithms can be classified in
基于协同过滤的推荐算法研究论文
关于推荐算法的一种最新研究,同时比较各种算法,提供应用参考
协同过滤推荐算法综述
协同过滤推荐算法综述。详细讲述了协同过滤算法以及其在推荐系统上的应用
协同过滤推荐算法
本文档描述了推荐算法中的不确定近邻协同过滤推荐算法,里面讲解了具体的计算方法和一些阐述
基于用户的协同过滤推荐算法研究
本研究主要聚焦于基于用户的协同过滤推荐算法,该算法是协同过滤方法的一个重要分支。 一、协同过滤算法原理 协同过滤的基本思想是“物以类聚,人以群分”,即假设用户如果在过去对某些物品有相似的评价,那么他们...
java协同过滤推荐算法
Java协同过滤推荐算法是一种在Java环境下实现的个性化推荐系统的核心技术。它主要应用于大数据环境中的信息过滤,通过分析用户的历史行为和偏好,预测用户可能对哪些未知项目感兴趣,从而为用户提供个性化的推荐服务...
基于用户兴趣的协同过滤推荐算法研究
在研究过程中,作者也参考了一些先前的研究,比如Sarwar等人提出的基于物品的协同过滤推荐算法,以及Zhang BQ提出的基于领域知识的协同过滤推荐算法。这些先前工作为本文的研究提供了理论基础和技术指导。 总结来说...
协同过滤推荐算法java实现
本资源是推荐系统中最基本且最精但的协同过滤推荐算法实现,包括数据集,以及算法的评价指标MAE的计算,数据集采用MovieLens中两个数据集进行测试,需要别的数据集可以根据自己需要添加,只需修改Base.java文件中的...
基于项目的协同过滤推荐算法原理、过程、代码实现 基于项目评分的协同过滤推荐算法程序 余弦、修正余弦、person皮尔森算法、欧几里得距离公式等相似度算法 movielens电影评分数据集
本文主要介绍基于项目的协同过滤推荐算法的推荐原理、推荐过程、代码实现。 一、基于项目的协同过滤推荐算法推荐原理 基于项目的协同过滤推荐算法也是推荐算法中最基础、最简单、很重要的算法,主要是根据用户对项目...
基于物品的协同过滤推荐算法
基于物品的协同过滤推荐算法是推荐系统中一种广泛使用的...总的来说,基于物品的协同过滤推荐算法借助MapReduce和Hadoop,能够处理海量用户行为数据,实现个性化推荐,而这种分布式实现方式是应对大数据挑战的关键。
基于Hadoop分布式改进聚类协同过滤推荐算法研究.pdf
通过整合这些技术,研究者们不仅解决了大规模数据下的协同过滤推荐算法所面临的问题,而且为处理未来可能遇到的更大规模数据挑战提供了有力的技术支持。这项研究在推荐系统领域具有重要的理论意义和实际应用价值,为...
引入个性化标签的协同过滤推荐算法研究-邢瑜航
基于标签特引入个性化标签的协同过滤推荐算法研究_邢瑜航征的长尾音乐推荐系统设计与实现_王思阳
基于云模型的协同过滤推荐算法
### 基于云模型的协同过滤推荐算法 #### 概述 在电子商务领域中,推荐系统是一项极为关键的技术,其主要目标是帮助用户在海量信息中筛选出符合其兴趣和需求的商品或服务。其中,协同过滤算法是推荐系统中最常用的...
基于用户的协同过滤推荐算法代码
本文使用Python实现简单的推荐系统,实践了基于用户的推荐系统,代码使用sklearn工具包实现。
基于标签分类的协同过滤推荐算法
传统的协同过滤根据用户的行为去预测可能喜欢的产品,是当前应用最广泛的推荐算法之一。但随着用户规模的急剧扩大,有价值的信息占比较少,存在稀疏性等问题,导致推荐质量不高。针对这一问题,提出了一种基于标签...
JavaWeb实现协同过滤推荐算法的电影推荐系统
例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将...
CSDN会员
开通CSDN年卡参与万元壕礼抽奖
海量
VIP免费资源
千本
正版电子书
商城
会员专享价
千门
课程&专栏
全年可省5,000元
立即开通
全年可省5,000元
立即开通
最新推荐
Java编程实现基于用户的协同过滤推荐算法代码示例
Java编程实现基于用户的协同过滤推荐算法代码示例 本文主要介绍了 Java 编程实现基于用户的协同过滤推荐算法代码示例。协同过滤算法是一种常见的推荐算法,它可以根据用户的行为和偏好推荐相似物品或服务。下面是该...
用户间多相似度协同过滤推荐算法
协同过滤推荐算法是一种广泛应用于个性化推荐系统中的技术,其基本思想是通过分析用户的历史行为,找出兴趣相似的用户,然后将一个用户喜欢的但其他用户还未评价的物品推荐给这些相似的用户。传统User-based协同过滤...
融合时间序列的POI动态推荐算法.pdf
总的来说,这个算法是推荐系统领域的一个重要进展,它巧妙地结合了时间序列分析、协同过滤、地理影响因子和流行度信息,以应对数据稀疏性带来的挑战,为用户提供更加个性化的兴趣点推荐。这一方法对于提升用户体验、...
java利用DFA算法实现敏感词过滤功能
在本文中,我们将探讨如何使用DFA(有穷自动机)算法在Java中实现敏感词过滤功能。敏感词过滤在许多应用程序中都是必要的,例如社交媒体、论坛或博客平台,以防止用户发布不当或有害的内容。以下是对DFA算法及其在...
电子商务协同过滤推荐系统的研究与进展
未来的研究方向包括但不限于以下几个方面:一是改进协同过滤算法,提高推荐精度和效率,如深度学习等技术的应用;二是探索新的相似度度量方法,以更好地捕捉用户兴趣的细微差异;三是研究如何有效地结合多种推荐策略...
JavaScript实现的高效pomodoro时钟教程
资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
管理建模和仿真的文件
管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例
![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。
在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
CMake 3.25.3版本发布:程序员必备构建工具
资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"