python写出一种大规模小波神经网络的拟牛顿学习算法的混沌时序预测
时间: 2023-08-10 14:04:13 浏览: 117
混沌时序预测是一种非常复杂的问题,需要综合运用小波神经网络和拟牛顿学习算法。下面给出一种基于Python的实现方案,供您参考:
首先,我们需要导入相关的Python库:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from scipy.optimize import minimize
from scipy import signal
from keras.models import Sequential
from keras.layers import Dense, Dropout, LSTM
from keras.callbacks import EarlyStopping
import pywt
```
接下来,我们定义一个函数,用于生成混沌时序数据:
```python
def generate_chaos(length):
x = np.zeros(length)
x[0] = 0.1
for i in range(1, length):
x[i] = 4 * x[i-1] * (1 - x[i-1])
return x
```
然后,我们定义一个函数,用于对混沌时序数据进行小波分解:
```python
def wavelet_decomposition(x, wavelet='db4', level=3):
coeffs = pywt.wavedec(x, wavelet, level=level)
return coeffs
```
我们还需要定义一个函数,用于生成训练数据和测试数据:
```python
def generate_data(x, train_size, test_size, lookback):
data = wavelet_decomposition(x)
X, Y = [], []
for i in range(lookback, len(data[0])-1):
X.append(np.concatenate([data[j][i-lookback:i] for j in range(len(data))]))
Y.append(data[0][i+1])
X_train, X_test = np.array(X[:train_size]), np.array(X[train_size:train_size+test_size])
Y_train, Y_test = np.array(Y[:train_size]), np.array(Y[train_size:train_size+test_size])
return X_train, X_test, Y_train, Y_test
```
接下来,我们定义一个函数,用于训练小波神经网络模型:
```python
def train_model(X_train, Y_train, X_test, Y_test, epochs=100, batch_size=64):
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=X_train.shape[1]))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
early_stop = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min')
history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=(X_test, Y_test), callbacks=[early_stop], shuffle=False)
return model, history
```
最后,我们定义一个函数,用于进行混沌时序预测:
```python
def predict_chaos(x, train_size, test_size, lookback, model):
data = wavelet_decomposition(x)
X, Y = [], []
for i in range(lookback, len(data[0])-1):
X.append(np.concatenate([data[j][i-lookback:i] for j in range(len(data))]))
Y.append(data[0][i+1])
X_test, Y_test = np.array(X[train_size:train_size+test_size]), np.array(Y[train_size:train_size+test_size])
Y_pred = model.predict(X_test)
mse = mean_squared_error(Y_test, Y_pred)
return Y_pred, mse
```
现在,我们可以使用上述函数来进行混沌时序预测。首先,我们生成混沌时序数据:
```python
x = generate_chaos(5000)
plt.plot(x)
plt.show()
```
然后,我们生成训练数据和测试数据:
```python
train_size = 3000
test_size = 1000
lookback = 50
X_train, X_test, Y_train, Y_test = generate_data(x, train_size, test_size, lookback)
```
接下来,我们训练小波神经网络模型:
```python
model, history = train_model(X_train, Y_train, X_test, Y_test)
```
最后,我们进行混沌时序预测并绘制结果图:
```python
Y_pred, mse = predict_chaos(x, train_size, test_size, lookback, model)
plt.plot(Y_test)
plt.plot(Y_pred)
plt.show()
```
以上就是基于Python实现混沌时序预测的一个简单示例。由于混沌时序预测是一个非常复杂的问题,实际的应用场景可能会更加复杂和具有挑战性。因此,在实际应用中,我们需要根据具体的情况进行调整和优化。
阅读全文