在10M以太网总线传输方式

时间: 2024-03-24 17:12:00 浏览: 24
在10M以太网总线传输方式中,所有的计算机都通过同一条总线进行通信。每个计算机都需要在总线上发送和接收数据,因此,当多台计算机同时发送数据时,就会出现数据冲突的情况。为了解决这个问题,10M以太网采用了CSMA/CD协议,即载波侦听多点接入/冲突检测协议。这个协议的作用是让每个计算机在发送数据之前先监听总线,如果检测到有其他计算机正在发送数据,就等待一段时间后再重新发送。如果在发送数据的过程中检测到冲突,就立即停止发送,并等待一段时间后再重新发送。这样可以保证数据的可靠性和网络的稳定性。
相关问题

FPGA以太网数据传输

FPGA以太网数据传输是通过以太网协议进行的。在该过程中,上位机通过网口调试助手发送数据给FPGA,FPGA开发板通过以太网口接收数据并将接收到的数据发送给上位机,实现了以太网的环回。以太网通过包的格式传输数据,而串口是通过字节的方式传输数据。数据的发送时钟和接收时钟由以太网芯片PHY提供,无需外部晶振。这个过程可以通过一些命令来实现,比如使用"netsh i i show in"命令来查看网卡的ID号,使用"arp -a"命令来查看本地连接的IP地址,使用"netsh -c i i add neighbors"命令将开发板的IP地址绑定到电脑的网卡。在实际应用中,FPGA和PC之间的通信协议一般采用Ethernet UDP通信协议,通过RGMII总线和开发板上的Gigabit PHY芯片进行通信。硬件上还需要实现ARP、UDP和PING功能,并实现100/1000M自适应。当数据传输成功时,网络数据接收窗口会显示FPGA发给PC的以太网数据包。这一过程中,目标主机的IP地址需要与FPGA程序中的IP地址一致,目标端口号也需要与FPGA程序中的一致。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [FPGA以太网通信实验](https://blog.csdn.net/xzs520xzs/article/details/125779500)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [FPGA 以太网](https://blog.csdn.net/weixin_60612482/article/details/124116468)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

假定 1 km长的总线型以太网的数据速率是 100 Mbit/s。设信号在总线上的传播速率是200000 km/s。试计算此网络的最短帧长。

根据以太网协议,最短帧长为64个字节,加上8字节的前导码和12字节的帧头,共计84字节,即672位。速率为100 Mbit/s,所以传送一个帧需要的时间为 672 / 100M 秒。信号在总线上的传播速率是200000 km/s,所以在传播一次信号需要的时间为 1 / 200000 秒。因此,帧在总线上传输的时间应该大于等于信号在总线上传播的时间,则可得最短帧长为: (672 / 100M) ≥ (1 / 200000) 672 ≥ 100M / 200000 672 ≥ 500 所以,最短帧长为 500 位。

相关推荐

最新推荐

recommend-type

各类总线的传输速率.doc

早期的以太网传输速率只有 10Mbps,后来发展出百兆网,理论传输速率可达 100Mbps,千兆网的理论传输速率则可达 1Gbps。 六、SD 总线 SD(Secure Digital)是一种常见的存储卡总线。其最高传输速率可达 10Mbps。 ...
recommend-type

DM9051于STM32F103ZE平台uIP开发指导

然后,我们需要配置DMA,简单介绍一下:DMA是AMBA的先进高性能总线(AHB)上的设备,它有2个AHB端口:一个是从端口,用于配置DMA,另一个是主端口,使得DMA可以在不同的从设备之间传输数据。 在SPI_DMA的通信过程中...
recommend-type

多核DSP Bootloader代码加载方法方案

EMAC支持IOM/IOOM/I 000M bit/s传输速率,SRIO支持1.25G/2.5G/3.125G bit/s传输速率。 三、EMAC boot load模式 EMAC boot load模式是指利用以太网口EMAC将代码加载到DSP芯片中。其boot load帧格式分为...
recommend-type

北邮研究生课程-计算机网络原理(马跃)-复习资料

局域网(LAN)则因小型和微型计算机的数据共享需求而诞生,以太网在20世纪90年代后期逐渐成为主流,速率从10M逐步提升至10G。LAN与WAN的融合体现在光纤的使用、协议简化以及TCP/IP协议的普及,推动了网络的快速发展...
recommend-type

MII、GMII、RMII接口介绍

在其他速率下工作的与MII等效的接口有AUI(10M以太网)、GMII(Gigabit以太网)和XAUI(10-Gigabit以太网)。 GMII(Gigabit MII)是MII的扩展,采用8位接口数据,工作时钟125MHz,因此传输速率可达1000Mbps。GMII...
recommend-type

基于单片机的瓦斯监控系统硬件设计.doc

"基于单片机的瓦斯监控系统硬件设计" 在煤矿安全生产中,瓦斯监控系统扮演着至关重要的角色,因为瓦斯是煤矿井下常见的有害气体,高浓度的瓦斯不仅会降低氧气含量,还可能引发爆炸事故。基于单片机的瓦斯监控系统是一种现代化的监测手段,它能够实时监测瓦斯浓度并及时发出预警,保障井下作业人员的生命安全。 本设计主要围绕以下几个关键知识点展开: 1. **单片机技术**:单片机(Microcontroller Unit,MCU)是系统的核心,它集成了CPU、内存、定时器/计数器、I/O接口等多种功能,通过编程实现对整个系统的控制。在瓦斯监控器中,单片机用于采集数据、处理信息、控制报警系统以及与其他模块通信。 2. **瓦斯气体检测**:系统采用了气敏传感器来检测瓦斯气体的浓度。气敏传感器是一种对特定气体敏感的元件,它可以将气体浓度转换为电信号,供单片机处理。在本设计中,选择合适的气敏传感器至关重要,因为它直接影响到检测的精度和响应速度。 3. **模块化设计**:为了便于系统维护和升级,单片机被设计成模块化结构。每个功能模块(如传感器接口、报警系统、电源管理等)都独立运行,通过单片机进行协调。这种设计使得系统更具有灵活性和扩展性。 4. **报警系统**:当瓦斯浓度达到预设的危险值时,系统会自动触发报警装置,通常包括声音和灯光信号,以提醒井下工作人员迅速撤离。报警阈值可根据实际需求进行设置,并且系统应具有一定的防误报能力。 5. **便携性和安全性**:考虑到井下环境,系统设计需要注重便携性,体积小巧,易于携带。同时,系统的外壳和内部电路设计必须符合矿井的安全标准,能抵抗井下潮湿、高温和电磁干扰。 6. **用户交互**:系统提供了灵敏度调节和检测强度调节功能,使得操作员可以根据井下环境变化进行参数调整,确保监控的准确性和可靠性。 7. **电源管理**:由于井下电源条件有限,瓦斯监控系统需具备高效的电源管理,可能包括电池供电和节能模式,确保系统长时间稳定工作。 通过以上设计,基于单片机的瓦斯监控系统实现了对井下瓦斯浓度的实时监测和智能报警,提升了煤矿安全生产的自动化水平。在实际应用中,还需要结合软件部分,例如数据采集、存储和传输,以实现远程监控和数据分析,进一步提高系统的综合性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册

![:Python环境变量配置从入门到精通:Win10系统下Python环境变量配置完全手册](https://img-blog.csdnimg.cn/20190105170857127.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzI3Mjc2OTUx,size_16,color_FFFFFF,t_70) # 1. Python环境变量简介** Python环境变量是存储在操作系统中的特殊变量,用于配置Python解释器和
recommend-type

electron桌面壁纸功能

Electron是一个开源框架,用于构建跨平台的桌面应用程序,它基于Chromium浏览器引擎和Node.js运行时。在Electron中,你可以很容易地处理桌面环境的各个方面,包括设置壁纸。为了实现桌面壁纸的功能,你可以利用Electron提供的API,如`BrowserWindow` API,它允许你在窗口上设置背景图片。 以下是一个简单的步骤概述: 1. 导入必要的模块: ```javascript const { app, BrowserWindow } = require('electron'); ``` 2. 在窗口初始化时设置壁纸: ```javas
recommend-type

基于单片机的流量检测系统的设计_机电一体化毕业设计.doc

"基于单片机的流量检测系统设计文档主要涵盖了从系统设计背景、硬件电路设计、软件设计到实际的焊接与调试等全过程。该系统利用单片机技术,结合流量传感器,实现对流体流量的精确测量,尤其适用于工业过程控制中的气体流量检测。" 1. **流量检测系统背景** 流量是指单位时间内流过某一截面的流体体积或质量,分为瞬时流量(体积流量或质量流量)和累积流量。流量测量在热电、石化、食品等多个领域至关重要,是过程控制四大参数之一,对确保生产效率和安全性起到关键作用。自托里拆利的差压式流量计以来,流量测量技术不断发展,18、19世纪出现了多种流量测量仪表的初步形态。 2. **硬件电路设计** - **总体方案设计**:系统以单片机为核心,配合流量传感器,设计显示单元和报警单元,构建一个完整的流量检测与监控系统。 - **工作原理**:单片机接收来自流量传感器的脉冲信号,处理后转化为流体流量数据,同时监测气体的压力和温度等参数。 - **单元电路设计** - **单片机最小系统**:提供系统运行所需的电源、时钟和复位电路。 - **显示单元**:负责将处理后的数据以可视化方式展示,可能采用液晶显示屏或七段数码管等。 - **流量传感器**:如涡街流量传感器或电磁流量传感器,用于捕捉流量变化并转换为电信号。 - **总体电路**:整合所有单元电路,形成完整的硬件设计方案。 3. **软件设计** - **软件端口定义**:分配单片机的输入/输出端口,用于与硬件交互。 - **程序流程**:包括主程序、显示程序和报警程序,通过流程图详细描述了每个程序的执行逻辑。 - **软件调试**:通过调试工具和方法确保程序的正确性和稳定性。 4. **硬件电路焊接与调试** - **焊接方法与注意事项**:强调焊接技巧和安全事项,确保电路连接的可靠性。 - **电路焊接与装配**:详细步骤指导如何组装电路板和连接各个部件。 - **电路调试**:使用仪器设备检查电路性能,排除故障,验证系统功能。 5. **系统应用与意义** 随着技术进步,单片机技术、传感器技术和微电子技术的结合使得流量检测系统具备更高的精度和可靠性,对于优化工业生产过程、节约资源和提升经济效益有着显著作用。 6. **结论与致谢** 文档结尾部分总结了设计成果,对参与项目的人表示感谢,并可能列出参考文献以供进一步研究。 7. **附录** 包含程序清单和电路总图,提供了具体实现细节和设计蓝图。 此设计文档为一个完整的机电一体化毕业设计项目,详细介绍了基于单片机的流量检测系统从概念到实施的全过程,对于学习单片机应用和流量测量技术的读者具有很高的参考价值。