用matlab写一个lstm预测模型,一共六个输入,一个输出
时间: 2023-07-14 11:13:25 浏览: 75
好的,下面是一个简单的六输入单输出的LSTM预测模型:
```matlab
% 准备数据
% 假设有500个样本,每个样本有6个特征和1个标签
num_samples = 500;
num_features = 6;
num_labels = 1;
X = rand(num_samples, num_features);
Y = rand(num_samples, num_labels);
% 划分训练集和测试集
train_ratio = 0.8;
train_size = floor(train_ratio * num_samples);
X_train = X(1:train_size, :);
Y_train = Y(1:train_size, :);
X_test = X(train_size+1:end, :);
Y_test = Y(train_size+1:end, :);
% 构建LSTM模型
num_hidden_units = 128;
num_epochs = 100;
mini_batch_size = 32;
input_size = num_features;
output_size = num_labels;
num_layers = 1;
lstm_layers = { ...
sequenceInputLayer(input_size)
lstmLayer(num_hidden_units, 'OutputMode', 'last')
fullyConnectedLayer(output_size)
regressionLayer};
options = trainingOptions('adam', ...
'MaxEpochs', num_epochs, ...
'MiniBatchSize', mini_batch_size, ...
'Shuffle', 'every-epoch', ...
'Verbose', 0);
% 训练模型
net = trainNetwork(X_train', Y_train', lstm_layers, options);
% 测试模型
Y_pred = predict(net, X_test')';
% 计算误差
rmse = sqrt(mean((Y_test - Y_pred).^2));
fprintf('RMSE: %.4f\n', rmse);
```
上面的代码中,我们使用了MATLAB自带的Deep Learning Toolbox中的`trainNetwork`函数来训练LSTM模型。首先我们准备数据,然后将数据划分为训练集和测试集。接下来,我们构建一个包含一个LSTM层的神经网络模型,并使用`trainingOptions`函数设置训练参数。最后,我们使用`trainNetwork`函数训练模型,并使用`predict`函数对测试集进行预测,最后计算预测误差(RMSE)。
阅读全文