请写出deeplabv3+网络加入注意力机制的方法与代码
时间: 2023-11-02 16:05:20 浏览: 288
注意力机制的一些代码整理
DeepLabv3+网络加入注意力机制的方法是通过在ASPP模块之前添加一层注意力机制。这个注意力机制将原始输入特征和深度特征进行结合,以产生更加准确的分割结果。
代码实现如下:
首先需要导入相关包,包括tensorflow和keras的模块:
```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```
接下来,我们可以定义注意力机制的实现:
```
class AttentionLayer(layers.Layer):
def __init__(self, filters):
super(AttentionLayer, self).__init__()
self.conv1 = layers.Conv2D(filters, kernel_size=1, strides=1, padding='same')
self.conv2 = layers.Conv2D(filters, kernel_size=1, strides=1, padding='same')
self.conv3 = layers.Conv2D(filters, kernel_size=1, strides=1, padding='same')
def call(self, input_tensor):
x = input_tensor
g = layers.GlobalAveragePooling2D()(x)
g = layers.Reshape((1, 1, -1))(g)
g = self.conv1(g)
g = layers.BatchNormalization()(g)
g = layers.Activation('relu')(g)
x = self.conv2(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
f = self.conv3(x)
f = layers.Add()([f, g])
f = layers.Activation('relu')(f)
f = layers.Conv2D(1, kernel_size=1, strides=1, padding='same')(f)
f = layers.BatchNormalization()(f)
f = layers.Activation('sigmoid')(f)
x = layers.Multiply()([x, f])
return x
```
在注意力层中,我们定义了三个卷积层,其中第一个卷积层用于将输入特征映射到一个维度更小的空间中,以便于将其与全局平均池化特征进行结合。第二个卷积层用于对输入特征进行处理,以便于将其与全局特征结合。第三个卷积层用于产生注意力向量,以决定输入特征的哪些部分应该被强调或忽略。最后,我们将注意力向量与输入特征相乘,以产生加强的特征。
在DeepLabv3+的网络结构中,我们可以在ASPP模块之前加入这个注意力层:
```
def Deeplabv3plus(input_shape=(512, 512, 3), num_classes=21):
inputs = keras.Input(shape=input_shape)
# 前半部分
x = layers.Conv2D(32, 3, strides=2, padding='same', use_bias=False)(inputs)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, 3, strides=1, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(64, 3, strides=1, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# 注意力层
x = AttentionLayer(64)(x)
x = layers.Conv2D(128, 3, strides=2, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, 3, strides=1, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
x = layers.Conv2D(128, 3, strides=1, padding='same', use_bias=False)(x)
x = layers.BatchNormalization()(x)
x = layers.Activation('relu')(x)
# 带空洞卷积的ASPP模块
x = ASPP(x, 128)
# 前置卷积模块
# 1x1 卷积降维
y = layers.Conv2D(48, 1, strides=1, padding='same', use_bias=False)(inputs)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
# 融合
y = layers.concatenate([x, y])
# 后置卷积模块
y = layers.Conv2D(256, 3, strides=1, padding='same', use_bias=False)(y)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
y = layers.Conv2D(256, 3, strides=1, padding='same', use_bias=False)(y)
y = layers.BatchNormalization()(y)
y = layers.Activation('relu')(y)
# 注意力层
y = AttentionLayer(256)(y)
y = layers.Conv2D(num_classes, 1, strides=1, activation='softmax')(y)
outputs = layers.UpSampling2D(size=(4, 4), interpolation='bilinear')(y)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
```
在这里,我们定义了一个名为“AttentionLayer”的类,其构造函数接受一个“filters”参数,表示输出通道数。然后,我们定义了一个名为“call”的方法,它接受一个输入张量,并返回经过注意力处理的结果张量。在DeepLabv3+的网络结构中,我们在第三个卷积层之后加入了这个注意力层,以提高模型的分割性能。
阅读全文