如何用python编写nsga-Ⅱ算法
时间: 2023-07-27 20:19:17 浏览: 107
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种常用的多目标优化算法,它结合了遗传算法和多目标优化的思想。这里提供一个用Python编写NSGA-II算法的示例,具体实现如下:
1.导入所需的库
```python
import random
import copy
import numpy as np
```
2.定义问题的目标函数
```python
def func(x):
"""目标函数"""
return [x[0]**2, (x[0]-2)**2]
```
3.定义NSGA-II算法的类
```python
class NSGA_II():
def __init__(self, problem_size, population_size, max_generation, crossover_prob, mutation_prob):
"""
初始化参数
problem_size: 问题的规模
population_size: 种群大小
max_generation: 最大迭代次数
crossover_prob: 交叉概率
mutation_prob: 变异概率
"""
self.problem_size = problem_size
self.population_size = population_size
self.max_generation = max_generation
self.crossover_prob = crossover_prob
self.mutation_prob = mutation_prob
self.population = []
self.fronts = []
self.crowd_distance = []
def initialize_population(self):
"""初始化种群"""
for i in range(self.population_size):
individual = []
for j in range(self.problem_size):
individual.append(random.uniform(0, 1))
self.population.append(individual)
def fast_non_dominated_sort(self, population):
"""
快速非支配排序
population: 当前种群
"""
fronts = [[]]
S = []
n = [0] * len(population)
rank = [0] * len(population)
for p in range(len(population)):
S.append([])
for q in range(len(population)):
if func(population[p])[0] < func(population[q])[0] and func(population[p])[1] < func(population[q])[1]:
if q not in S[p]:
S[p].append(q)
elif func(population[q])[0] < func(population[p])[0] and func(population[q])[1] < func(population[p])[1]:
n[p] += 1
if n[p] == 0:
rank[p] = 0
fronts[0].append(p)
i = 0
while fronts[i]:
Q = []
for p in fronts[i]:
for q in S[p]:
n[q] -= 1
if n[q] == 0:
rank[q] = i + 1
Q.append(q)
i += 1
fronts.append(Q)
del fronts[-1]
self.fronts = fronts
def crowding_distance(self, front):
"""
拥挤度计算
front: 当前层
"""
distance = [0] * len(front)
for m in range(len(func([0] * self.problem_size))):
front.sort(key=lambda x: func(x)[m])
distance[0] = distance[-1] = float('inf')
for i in range(1, len(front)-1):
distance[i] += (func(front[i+1])[m] - func(front[i-1])[m]) / (func(front[-1])[m] - func(front[0])[m])
return distance
def selection(self, front):
"""
选择操作
front: 当前层
"""
next_population = []
front_size = len(front)
if len(self.population) + front_size <= self.population_size:
next_population = front
else:
self.crowd_distance = [0] * front_size
front = sorted(front, key=lambda x: func(x)[0])
for i in range(front_size):
next_population.append(front[i])
for m in range(len(func([0] * self.problem_size))):
front = sorted(front, key=lambda x: func(x)[m])
self.crowd_distance = [self.crowd_distance[i] + (func(front[i+1])[m] - func(front[i-1])[m]) / (func(front[-1])[m] - func(front[0])[m]) for i in range(1, front_size-1)]
front = [front[i] for i in range(1, front_size-1)]
while len(next_population) < self.population_size:
index = self.crowd_distance.index(max(self.crowd_distance))
next_population.append(front[index])
del front[index]
del self.crowd_distance[index]
return next_population
def crossover(self, parent1, parent2):
"""
交叉操作
parent1: 父代1
parent2: 父代2
"""
if random.random() < self.crossover_prob:
child1 = []
child2 = []
alpha = random.random()
for i in range(self.problem_size):
child1.append(alpha * parent1[i] + (1 - alpha) * parent2[i])
child2.append(alpha * parent2[i] + (1 - alpha) * parent1[i])
return child1, child2
else:
return parent1, parent2
def mutation(self, individual):
"""
变异操作
individual: 待变异个体
"""
if random.random() < self.mutation_prob:
mutated_individual = []
for i in range(self.problem_size):
mutated_individual.append(individual[i] + random.uniform(-0.1, 0.1))
return mutated_individual
else:
return individual
def evolve(self):
"""进化"""
self.initialize_population()
for i in range(self.max_generation):
self.fast_non_dominated_sort(self.population)
next_population = []
for front in self.fronts:
next_population += self.selection(front)
while len(next_population) < self.population_size:
parent1 = random.choice(self.population)
parent2 = random.choice(self.population)
child1, child2 = self.crossover(parent1, parent2)
next_population.append(self.mutation(child1))
next_population.append(self.mutation(child2))
self.population = copy.deepcopy(next_population)
def get_fronts(self):
"""获取非支配解集"""
fronts = []
self.fast_non_dominated_sort(self.population)
for front in self.fronts:
fronts.append([self.population[i] for i in front])
return fronts
```
4.使用NSGA-II算法求解多目标优化问题
```python
problem_size = 1
population_size = 100
max_generation = 100
crossover_prob = 0.9
mutation_prob = 0.1
nsga = NSGA_II(problem_size, population_size, max_generation, crossover_prob, mutation_prob)
nsga.evolve()
fronts = nsga.get_fronts()
for i, front in enumerate(fronts):
print("Front {}:".format(i+1))
for individual in front:
print(" {}".format(individual))
```
注意:本示例仅针对问题规模为1的情况,如果问题规模大于1,需要将NSGA_II类中的func函数修改为问题的实际目标函数。
阅读全文