用Java写一个Apriori算法药店管理系统的推荐药品的算法
时间: 2023-11-18 16:02:52 浏览: 157
apriori算法的java代码
4星 · 用户满意度95%
好的,以下是一个Java实现的Apriori算法药店管理系统的推荐药品的算法:
首先,我们需要定义一个Item类,表示每个药品,包括药品的ID和名称。代码如下:
```
public class Item {
private int id;
private String name;
public Item(int id, String name) {
this.id = id;
this.name = name;
}
public int getId() {
return id;
}
public String getName() {
return name;
}
}
```
接下来,我们定义一个Transaction类,表示每个订单,包括订单的ID和药品列表。代码如下:
```
public class Transaction {
private int id;
private List<Item> items;
public Transaction(int id, List<Item> items) {
this.id = id;
this.items = items;
}
public int getId() {
return id;
}
public List<Item> getItems() {
return items;
}
}
```
然后,我们定义一个Apriori类,实现Apriori算法。代码如下:
```
public class Apriori {
private List<Transaction> transactions;
private double minSupport;
private double minConfidence;
private List<ItemSet> frequentItemSets;
public Apriori(List<Transaction> transactions, double minSupport, double minConfidence) {
this.transactions = transactions;
this.minSupport = minSupport;
this.minConfidence = minConfidence;
this.frequentItemSets = new ArrayList<>();
}
public void run() {
// 获取所有不同的药品
Set<Item> items = new HashSet<>();
for (Transaction transaction : transactions) {
items.addAll(transaction.getItems());
}
// 构建初始的频繁项集
List<ItemSet> frequentItemSets = new ArrayList<>();
for (Item item : items) {
ItemSet itemSet = new ItemSet(Collections.singletonList(item));
double support = calculateSupport(itemSet);
if (support >= minSupport) {
frequentItemSets.add(itemSet);
}
}
// 迭代计算频繁项集
while (!frequentItemSets.isEmpty()) {
List<ItemSet> candidateItemSets = generateCandidateItemSets(frequentItemSets);
frequentItemSets.clear();
for (ItemSet candidateItemSet : candidateItemSets) {
double support = calculateSupport(candidateItemSet);
if (support >= minSupport) {
frequentItemSets.add(candidateItemSet);
}
}
this.frequentItemSets.addAll(frequentItemSets);
}
}
private List<ItemSet> generateCandidateItemSets(List<ItemSet> frequentItemSets) {
// 生成候选项集
List<ItemSet> candidateItemSets = new ArrayList<>();
for (int i = 0; i < frequentItemSets.size(); i++) {
for (int j = i + 1; j < frequentItemSets.size(); j++) {
ItemSet itemSet1 = frequentItemSets.get(i);
ItemSet itemSet2 = frequentItemSets.get(j);
if (itemSet1.size() != itemSet2.size()) {
continue;
}
ItemSet union = itemSet1.union(itemSet2);
if (union != null && !candidateItemSets.contains(union)) {
candidateItemSets.add(union);
}
}
}
return candidateItemSets;
}
private double calculateSupport(ItemSet itemSet) {
int count = 0;
for (Transaction transaction : transactions) {
if (transaction.getItems().containsAll(itemSet.getItems())) {
count++;
}
}
return count * 1.0 / transactions.size();
}
public List<ItemSet> getFrequentItemSets() {
return frequentItemSets;
}
}
```
最后,我们可以使用Apriori类来推荐药品。首先,我们需要构建一个Transaction列表,表示所有订单。然后,我们可以使用Apriori类来计算所有频繁项集。对于每个订单,我们可以找出其中不包含在该订单中的所有频繁项集,并推荐其中一个药品。具体代码如下:
```
public class PharmacyManagementSystem {
private List<Transaction> transactions;
private Apriori apriori;
public PharmacyManagementSystem(List<Transaction> transactions) {
this.transactions = transactions;
this.apriori = new Apriori(transactions, 0.1, 0.5);
this.apriori.run();
}
public Item recommendItem(Transaction transaction) {
Set<Item> items = new HashSet<>(transaction.getItems());
List<ItemSet> frequentItemSets = apriori.getFrequentItemSets();
List<Item> recommendedItems = new ArrayList<>();
for (ItemSet frequentItemSet : frequentItemSets) {
if (!transaction.getItems().containsAll(frequentItemSet.getItems())) {
recommendedItems.addAll(frequentItemSet.getItems());
}
}
if (recommendedItems.isEmpty()) {
return null;
}
return recommendedItems.get(new Random().nextInt(recommendedItems.size()));
}
}
```
这样,我们就可以使用PharmacyManagementSystem来推荐药品了。例如:
```
Item item1 = new Item(1, "药品1");
Item item2 = new Item(2, "药品2");
Item item3 = new Item(3, "药品3");
List<Transaction> transactions = new ArrayList<>();
transactions.add(new Transaction(1, Arrays.asList(item1, item2)));
transactions.add(new Transaction(2, Arrays.asList(item2, item3)));
transactions.add(new Transaction(3, Arrays.asList(item1, item3)));
transactions.add(new Transaction(4, Arrays.asList(item1, item2, item3)));
PharmacyManagementSystem pharmacyManagementSystem = new PharmacyManagementSystem(transactions);
Item recommendedItem = pharmacyManagementSystem.recommendItem(new Transaction(5, Arrays.asList(item1, item2)));
System.out.println("推荐药品:" + recommendedItem.getName());
```
这个例子中,我们先定义了三个药品item1、item2和item3,然后构建了四个订单transactions。接下来,我们使用PharmacyManagementSystem来推荐药品给第五个订单,即包含item1和item2的订单。最终,我们得到了一个随机推荐的药品。
阅读全文