class Path(object): def __init__(self,path,distancecost,timecost): self.__path = path self.__distancecost = distancecost self.__timecost = timecost #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, dprice, tprice): return Path(self.__path+[node],self.__distancecost + dprice,self.__timecost + tprice) #输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") print(f"最短路径距离(self.__distancecost:.0f)m") print(f"红绿路灯个数(self.__timecost:.0f)个") #获取路径总成本的只读属性 @property def dCost(self): return self.__distancecost @property def tCost(self): return self.__timecost class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') #通过递归生成所有可能的路径 def __generatePath(self, graph, path, end, results, distancecostIndex, timecostIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][distancecostIndex][timecostIndex]), end, results, distancecostIndex, timecostIndex) #搜索start到end之间时间或空间最短的路径,并输出 def __searchPath(self, start, end, distancecostIndex, timecostIndex): results = [] self.__generatePath(self.__graph, Path([start],0,0), end, results,distancecostIndex,timecostIndex) results.sort(key=lambda p: p.distanceCost) results.sort(key=lambda p: p.timeCost) print('The {} shortest path from '.format("spatially" if distancecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") print('The {} shortest path from '.format("spatially" if timecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") results[0].printPath() #调用__searchPath搜索start到end之间的空间最短的路径,并输出 def searchSpatialMinPath(self,start, end): self.__searchPath(start,end,0,0) #调用__searc 优化这个代码

时间: 2024-03-09 20:46:16 浏览: 145
这段代码中可以进行如下优化: 1. 将类属性的命名改为下划线开头的私有属性,避免外部直接修改属性值,可以使用@property装饰器来获取属性的值。 2. 可以将类的构造函数中的参数改为可选参数,避免在初始化时需要传入参数,可以在需要时再传入参数。 3. 在递归函数的参数中加入默认值,避免在调用递归函数时需要传入所有参数。 4. 可以使用f-string格式化输出语句,代码更加简洁易读。 5. 可以使用列表推导式对列表进行过滤。 6. 在搜索最短路径时可以使用heapq模块的堆排序来优化效率。 优化后的代码如下: ```python import heapq class Path(object): def __init__(self, path = [], distance_cost = 0, time_cost = 0): self._path = path self._distance_cost = distance_cost self._time_cost = time_cost def get_last_node(self): return self._path[-1] def is_last_node(self, node): return node == self.get_last_node() def add_node(self, node, d_price, t_price): return Path(self._path + [node], self._distance_cost + d_price, self._time_cost + t_price) def print_path(self): for n in self._path: print(n, end="->" if not self.is_last_node(n) else "\n") print(f"最短路径距离({self._distance_cost:.0f}m)") print(f"红绿路灯个数({self._time_cost:.0f})个") @property def d_cost(self): return self._distance_cost @property def t_cost(self): return self._time_cost class DirectedGraph(object): def __init__(self, d = {}): if isinstance(d, dict): self._graph = d else: self._graph = dict() print('Something went wrong!') def __generate_path(self, graph, path, end, results, distance_cost_index=0, time_cost_index=0): current = path.get_last_node() if current == end: results.append(path) else: for n in graph[current]: if n not in path._path: self.__generate_path(graph, path.add_node(n, self._graph[path.get_last_node()][n][distance_cost_index][time_cost_index]), end, results, distance_cost_index, time_cost_index) def __search_path(self, start, end, distance_cost_index=0, time_cost_index=0): results = [] self.__generate_path(self._graph, Path([start], 0, 0), end, results, distance_cost_index, time_cost_index) results = heapq.nsmallest(1, results, key=lambda p: (p.d_cost, p.t_cost)) print(f"The {'spatially' if distance_cost_index==0 else 'temporally'} shortest path from {start} to {end} is:") results[0].print_path() def search_spatial_min_path(self, start, end): self.__search_path(start, end, 0, 0) def search_temporal_min_path(self, start, end): self.__search_path(start, end, 1, 1) ```
阅读全文

相关推荐

优化该代码class Path(object): def __init__(self,path,cost1,cost2): self.__path = path self.__cost1 = cost1 self.__cost2 = cost2 #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, price1,price2): return Path(self.__path+[node],self.__cost1+ price1,self.__cost2+ price2) #输出当前路径 def printPath(self): global num #将num作为循环次数,即红绿灯数量 global distance num = 0 for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") num += 1 print("全程约为 {:.4}公里".format(str(self.__cost1))) print("时间大约为 {}分钟".format(str(self.__cost2))) print("需要经过{}个红绿灯".format(num)) distance = self.__cost1 #获取路径总成本的只读属性 @property def travelCost1(self): return self.__cost1 @property def travelCost2(self): return self.__cost2 class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') def __generatePath(self, graph, path, end, results): #current = path[-1] current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: #if n not in path: if n not in path.path: #self.__generatePath(graph, path + [n], end, results) self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][0],self.__graph[path.getLastNode()][n][1]),end, results) #self.__generatePath(graph,使其能够保存输入记录并且能够查询和显示

import random class Path(): def __init__(self, path, cost): self.__path = path self.__cost = cost # 获取路径上最后一个节点(T) def getLastNode(self): return self.__path[-1] # 获取路径的只读属性 @property def path(self): #这个函数有什么用 return self.__path # 判断node是否为最后一个节点 def isLastNode(self, node): return node == self.getLastNode() # 增加节点和成本 def addNode(self, node, price): return Path(self.__path+[node], self.__cost+price) # 输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(n): print(n) else: print(n, end="-->") print("Cost is: "+str(self.__cost)) # 获取成本的只读属性 @property def travelCost(self): return self.__cost class DirectedGraph(): def __init__(self,d): self.__graph = d def __generatePath(self, graph, path, end, results, costIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n, self.__graph[path.getLastNode()][n][costIndex]), end , results, costIndex) # 搜索start到end之间时间或空间的最短路径,并输出 def searchPath(self, start, end): self._results = [] self.__generatePath(self.__graph, Path([start], 0), end,self._results) self._results.sort(key=lambda x: len(x)) # 调用searchPath搜索start到end之间空间最短的路径,并输出 def searchMinPath(self, start, end): self.searchPath(start, end) print("共有{}条路径".format(len(self._results))) # 计算路径数 for path in self._results: #print(path) distance = 0 light_points=0 time = 0 for i in range(len(path) - 1): point1 = self.__graph[path[i]] point2 = point1[path[i + 1]] distance += point2[0] time += (point2[0]/point2[1]) light_points+=point2[2] path.append(distance) path.append(light_points)

class Path(object): def __init__(self,path,cost=0): if isinstance(path,list): self.__path = [(item[0],item[1]) for item in path] else: self.__path = [(path,0)] # 初始化开始节点 def clone(self): return Path([(item[0],item[1]) for item in self.__path]) # 路径上最后一个节点 def getLastNode(self): return self.__path[-1][0] # 获取路径路径 @property def path(self): return " ===> ".join([ item[0] for item in self.__path]) # 判断 node 是否为路径上最后一个节点 def isLastNode(self,node): return node == self.__path[-1][0] # 增加加点和成本 def addNode(self,node,price): self.__path.append((node,price)) # 判断 node 是否在 path 上 def isNodeInPath(self,node): for item in self.__path: if item[0] == node: return True return False # 输出当前路径 def printPath(self): print([item[0] for item in self.__path].join("\t")) # 获取路径总成本的只读属性 @property def travelCost(self): return sum([item[1] for item in self.__path]) class DirectedGraph(object): def __init__(self,d): self.__graph = d # 通过递归生成所有可能的路径 def __generatePath(self,graph,path,end,results,costIndex): current = path.getLastNode() if current == end: results.append(path) else: oldPath = path.clone() # 保留原始 path 的副本 for (node,cost) in graph[current].items(): if path.isNodeInPath(node) == False: path = oldPath.clone() path.addNode(node,cost[costIndex]) # 在 path 中添加 node self.__generatePath(graph,path,end,results,costIndex) # 搜索 start 到 end 之间时间或空间最短的路径,并输出 def __searchPath(self,start,end,costIndex): results = [] self.__generatePath(self.__graph,Path(start),end,results,costIndex) if costIndex==0: # 当求空间最短时候,输出所有的可能路径,否则不输出(避免重复显示) if len(results) == 0 : print(f'{start} 到 {end} 的没有可行路径!') else: print(f'{start} 到 {end} 的所有路径有:') results.sort(key=lambda x:len(x.path)) # 按路径长度进行排序 for path in results: print("\t",path.path) return results如果我想把起点和终点范围改变,应该如何修改代码

最新推荐

recommend-type

Python中if __name__ == '__main__'作用解析

def __init__(self): pass def f(self): print('Hello, World!') if __name__ == '__main__': Test().f() ``` 当你在命令行环境中直接运行 `python Test.py` 时,`__name__` 的值是 `'__main__'`,因此 `if ...
recommend-type

(175797816)华南理工大学信号与系统Signal and Systems期末考试试卷及答案

内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【天线性能提升密籍】:深入探究均匀线阵方向图设计原则及案例分析

![均匀线阵方向图](https://img-blog.csdnimg.cn/img_convert/0080eea0ca4af421d2bc9c74b87376c4.webp?x-oss-process=image/format,png) # 摘要 本文深入探讨了均匀线阵天线的基础理论及其方向图设计,旨在提升天线系统的性能和应用效能。文章首先介绍了均匀线阵及方向图的基本概念,并阐述了方向图设计的理论基础,包括波束形成与主瓣及副瓣特性的控制。随后,论文通过设计软件工具的应用和实际天线系统调试方法,展示了方向图设计的实践技巧。文中还包含了一系列案例分析,以实证研究验证理论,并探讨了均匀线阵性能
recommend-type

C#怎么把图片存入名为当前日期的文件夹里

在C#中,你可以通过`System.IO`命名空间下的`Directory`和`File`类来创建并存储图片到包含当前日期的文件夹里。以下是一个简单的示例: ```csharp using System; using System.IO; public void SaveImageToTodayFolder(string imagePath, string imageName) { // 获取当前日期 DateTime currentDate = DateTime.Now; string folderPath = Path.Combine(Environment.C