class Path(object): def __init__(self,path,cost=0): if isinstance(path,list): self.__path = [(item[0],item[1]) for item in path] else: self.__path = [(path,0)] # 初始化开始节点 def clone(self): return Path([(item[0],item[1]) for item in self.__path]) # 路径上最后一个节点 def getLastNode(self): return self.__path[-1][0] # 获取路径路径 @property def path(self): return " ===> ".join([ item[0] for item in self.__path]) # 判断 node 是否为路径上最后一个节点 def isLastNode(self,node): return node == self.__path[-1][0] # 增加加点和成本 def addNode(self,node,price): self.__path.append((node,price)) # 判断 node 是否在 path 上 def isNodeInPath(self,node): for item in self.__path: if item[0] == node: return True return False # 输出当前路径 def printPath(self): print([item[0] for item in self.__path].join("\t")) # 获取路径总成本的只读属性 @property def travelCost(self): return sum([item[1] for item in self.__path]) class DirectedGraph(object): def __init__(self,d): self.__graph = d # 通过递归生成所有可能的路径 def __generatePath(self,graph,path,end,results,costIndex): current = path.getLastNode() if current == end: results.append(path) else: oldPath = path.clone() # 保留原始 path 的副本 for (node,cost) in graph[current].items(): if path.isNodeInPath(node) == False: path = oldPath.clone() path.addNode(node,cost[costIndex]) # 在 path 中添加 node self.__generatePath(graph,path,end,results,costIndex) # 搜索 start 到 end 之间时间或空间最短的路径,并输出 def __searchPath(self,start,end,costIndex): results = [] self.__generatePath(self.__graph,Path(start),end,results,costIndex) if costIndex==0: # 当求空间最短时候,输出所有的可能路径,否则不输出(避免重复显示) if len(results) == 0 : print(f'{start} 到 {end} 的没有可行路径!') else: print(f'{start} 到 {end} 的所有路径有:') results.sort(key=lambda x:len(x.path)) # 按路径长度进行排序 for path in results: print("\t",path.path) return results如果我想把起点和终点范围改变,应该如何修改代码

时间: 2024-02-16 13:04:42 浏览: 17
如果您想把起点和终点范围改变,可以修改 `__searchPath` 函数的参数 `start` 和 `end`,将其改为您想要的起点和终点。具体代码修改如下: ``` def __searchPath(self,start,end,costIndex): results = [] self.__generatePath(self.__graph,Path(start),end,results,costIndex) if costIndex==0: if len(results) == 0 : print(f'{start} 到 {end} 的没有可行路径!') else: print(f'{start} 到 {end} 的所有路径有:') results.sort(key=lambda x:len(x.path)) for path in results: print("\t",path.path) return results ``` 您可以将 `start` 和 `end` 修改为您想要的值。注意,如果修改了起点和终点,需要确保图中也有这些节点。
相关问题

优化该代码class Path(object): def __init__(self,path,cost1,cost2): self.__path = path self.__cost1 = cost1 self.__cost2 = cost2 #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, price1,price2): return Path(self.__path+[node],self.__cost1+ price1,self.__cost2+ price2) #输出当前路径 def printPath(self): global num #将num作为循环次数,即红绿灯数量 global distance num = 0 for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") num += 1 print("全程约为 {:.4}公里".format(str(self.__cost1))) print("时间大约为 {}分钟".format(str(self.__cost2))) print("需要经过{}个红绿灯".format(num)) distance = self.__cost1 #获取路径总成本的只读属性 @property def travelCost1(self): return self.__cost1 @property def travelCost2(self): return self.__cost2 class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') def __generatePath(self, graph, path, end, results): #current = path[-1] current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: #if n not in path: if n not in path.path: #self.__generatePath(graph, path + [n], end, results) self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][0],self.__graph[path.getLastNode()][n][1]),end, results) #self.__generatePath(graph,使其能够保存输入记录并且能够查询和显示

可以考虑以下优化: 1. 在 `Path` 类中,可以将 `getLastNode()` 方法改为直接返回 `self.__path[-1]`,因为这个方法只被 `addNode()` 方法调用,而 `addNode()` 方法中也可以直接使用 `self.__path[-1]`。 2. 在 `Path` 类中,可以将 `isLastNode()` 方法改为直接比较 `node` 和 `self.__path[-1]`,因为这个方法只被 `printPath()` 方法调用,而 `printPath()` 方法中也可以直接比较。 3. 在 `Path` 类中,可以将 `printPath()` 方法中的 `global` 声明去掉,因为在该方法中没有使用到任何全局变量。 4. 在 `Path` 类中,可以将 `distance` 变量改为实例变量,即在 `__init__()` 方法中初始化为 0,并在 `printPath()` 方法中使用 `self.__cost1` 赋值。 5. 在 `DirectedGraph` 类中,可以将 `__graph` 变量改为实例变量,即在 `__init__()` 方法中初始化为空字典,并在需要使用时直接使用 `self.__graph`。 下面是修改后的代码: ``` class Path(object): def __init__(self, path, cost1, cost2): self.__path = path self.__cost1 = cost1 self.__cost2 = cost2 self.__distance = 0 # 路径总长度,初始为 0 @property def path(self): return self.__path def getLastNode(self): return self.__path[-1] def isLastNode(self, node): return node == self.__path[-1] def addNode(self, node, price1, price2): return Path(self.__path + [node], self.__cost1 + price1, self.__cost2 + price2) def printPath(self): num = 0 for n in self.__path: if self.isLastNode(n): print(n) else: print(n, end="->") num += 1 print("全程约为 {:.4}公里".format(str(self.__cost1))) print("时间大约为 {}分钟".format(str(self.__cost2))) print("需要经过{}个红绿灯".format(num)) self.__distance = self.__cost1 @property def travelCost1(self): return self.__cost1 @property def travelCost2(self): return self.__cost2 class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') def __generatePath(self, graph, path, end, results): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: results = self.__generatePath(graph, path.addNode(n, graph[path.getLastNode()][n][0], graph[path.getLastNode()][n][1]), end, results) return results ```

class Ver: def __init__(self,lst): self.lst=[0,0,0] if isinstance(lst,list): self.lst[:]=lst[:] def __mul__(self,V2): pass def __imul__(self, val): pass def __repr__(self): return "Vec:"=str(self.lst) def __str__(self): return "Vec:"+str(self.lst)补充__mul__和__imul__方法的定义。当执行如下语句时,程序能正确的输出结 果:

根据你提供的代码,我已经补充了 `__mul__` 和 `__imul__` 方法的定义。以下是完整的代码: ```python class Vec: def __init__(self, lst): self.lst = [0, 0, 0] if isinstance(lst, list): self.lst[:] = lst[:] def __mul__(self, V2): if isinstance(V2, Vec): if len(self.lst) != len(V2.lst): raise ValueError("Vectors must have the same length") result = Vec([]) for i in range(len(self.lst)): result.lst[i] = self.lst[i] * V2.lst[i] return result else: raise TypeError("Unsupported operand type") def __imul__(self, val): if isinstance(val, (int, float)): for i in range(len(self.lst)): self.lst[i] *= val return self else: raise TypeError("Unsupported operand type") def __repr__(self): return "Vec:" + str(self.lst) def __str__(self): return "Vec:" + str(self.lst) # 示例用法 v1 = Vec([1, 2, 3]) v2 = Vec([2, 3, 4]) # 向量相乘 v3 = v1 * v2 print(v3) # 输出: Vec:[2, 6, 12] # 向量缩放 v1 *= 2 print(v1) # 输出: Vec:[2, 4, 6] ``` 在这个示例中,`__mul__` 方法重载了 `*` 运算符,用于实现向量的逐元素相乘。如果操作数是 Vec 类型的向量,则返回一个新的 Vec 对象,其元素为两个向量对应位置的乘积。 `__imul__` 方法重载了 `*=` 运算符,用于实现向量缩放。如果操作数是数字类型,则将原向量的每个分量与该数字相乘,并在原地更新原向量。 注意,以上代码只是一个简单的示例,没有处理一些特殊情况(如输入类型错误、向量长度不匹配等),你可以根据需要进行进一步的扩展和优化。

相关推荐

class Path(object): def __init__(self,path,distancecost,timecost): self.__path = path self.__distancecost = distancecost self.__timecost = timecost #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, dprice, tprice): return Path(self.__path+[node],self.__distancecost + dprice,self.__timecost + tprice) #输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") print(f"最短路径距离(self.__distancecost:.0f)m") print(f"红绿路灯个数(self.__timecost:.0f)个") #获取路径总成本的只读属性 @property def dCost(self): return self.__distancecost @property def tCost(self): return self.__timecost class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') #通过递归生成所有可能的路径 def __generatePath(self, graph, path, end, results, distancecostIndex, timecostIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][distancecostIndex][timecostIndex]), end, results, distancecostIndex, timecostIndex) #搜索start到end之间时间或空间最短的路径,并输出 def __searchPath(self, start, end, distancecostIndex, timecostIndex): results = [] self.__generatePath(self.__graph, Path([start],0,0), end, results,distancecostIndex,timecostIndex) results.sort(key=lambda p: p.distanceCost) results.sort(key=lambda p: p.timeCost) print('The {} shortest path from '.format("spatially" if distancecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") print('The {} shortest path from '.format("spatially" if timecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") results[0].printPath() #调用__searchPath搜索start到end之间的空间最短的路径,并输出 def searchSpatialMinPath(self,start, end): self.__searchPath(start,end,0,0) #调用__searc 优化这个代码

class Path(object): def __init__(self,path,cost1,cost2): self.__path = path self.__cost1 = cost1 self.__cost2 = cost2 #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, price1,price2): return Path(self.__path+[node],self.__cost1+ price1,self.__cost2+ price2) #输出当前路径 def printPath(self): global num #将num作为循环次数,即红绿灯数量 global distance num = 0 for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") num += 1 print("全程约为 {:.4}公里".format(str(self.__cost1))) print("时间大约为 {}分钟".format(str(self.__cost2))) print("需要经过{}个红绿灯".format(num)) distance = self.__cost1 #获取路径总成本的只读属性 @property def travelCost1(self): return self.__cost1 @property def travelCost2(self): return self.__cost2 class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') def __generatePath(self, graph, path, end, results): #current = path[-1] current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: #if n not in path: if n not in path.path: #self.__generatePath(graph, path + [n], end, results) self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][0],self.__graph[path.getLastNode()][n][1]),end, results) #self.__gener给该代码加一个可以保存输入记录并且能够查询显示的功能

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩