class Proposition: def __init__(self, name): self.name = name self.value = None def divide(self): # 请删除下面的pass后完成函数功能 return self.__str__() def __eq__(self, other): if not isinstance(other, Propositio

时间: 2023-05-31 14:03:45 浏览: 62
这是一个 Python 类,名为 Proposition(命题)。它有一个构造函数 __init__,接受一个参数 name,并将其赋值给对象的属性 self.name。另外,它还有一个属性 self.value,初始值为 None。 类中还定义了一个方法 divide,但是这个方法没有完整的代码,无法确定它的具体功能。
相关问题

class Proposition: def __init__(self, name): self.name = name self.value = None def __str__(self): return self.name def __hash__(self): return hash(str(self))

class Proposition: def __init__(self, name): self.name = name self.value = None def __str__(self): return self.name def __hash__(self): return hash(str(self))

python实现归结演绎推理_归结演绎推理

归结演绎推理是一种逻辑推理方法,它通过对两个命题进行归结操作,得到一个新的命题,从而推导出结论。在Python中,可以通过实现归结演绎推理算法来实现这种推理过程。 下面是一个简单的Python实现归结演绎推理算法的代码示例: ```python # 定义命题类 class Proposition: def __init__(self, predicate, arguments): self.predicate = predicate self.arguments = arguments def __repr__(self): return self.predicate + "(" + ",".join(self.arguments) + ")" # 定义归结操作 def resolve(p1, p2): for arg in p1.arguments: if arg[0] == "~": neg = arg[1:] else: neg = "~" + arg if neg in p2.arguments: new_args = [a for a in p1.arguments if a != arg] + [a for a in p2.arguments if a != neg] return Proposition(p1.predicate, new_args) return None # 定义归结演绎推理函数 def resolution(propositions, target): resolved = set() while True: new_propositions = set() for p1 in propositions: for p2 in propositions: if p1 != p2 and (p1, p2) not in resolved and (p2, p1) not in resolved: resolvent = resolve(p1, p2) if resolvent is not None: if resolvent.arguments == []: return True new_propositions.add(resolvent) resolved.add((p1, p2)) if not new_propositions: return False if target in new_propositions: return True for p in new_propositions: propositions.add(p) # 测试 propositions = {Proposition("likes", ["john", "mary"]), Proposition("likes", ["mary", "sue"]), Proposition("likes", ["sue", "john"]), Proposition("~likes", ["x", "y"])} print(resolution(propositions, Proposition("~likes", ["john", "mary"]))) ``` 在这个示例中,我们定义了一个`Proposition`类来表示命题,它包含一个谓词和一组参数。我们还定义了`resolve`函数来执行归结操作,以及`resolution`函数来实现归结演绎推理算法。在测试中,我们使用了一组命题来测试我们的算法。 这个示例只是一个简单的实现,实际上,归结演绎推理算法有许多变种和优化,可以根据具体需求进行设计和实现。

相关推荐

From Proposition 1, we plug ri,O = li(μ)τi into (39) and rewrite problem (38) as maximize ri,O 􏰗ai − μ li (μ) − Yi(t)g [li(μ)]􏰘 ri,O li (μ)hi (41a) March 2, 2021 DRAFT maximize ˆr O subject to 0 ≤ ri,O ≤ Qi(t), (41b) 0, ifa − μ −Y(t)g[li(μ)] <0, subject to where the optimal solution is r∗ i,O Accordingly, we have τ∗ = r∗ ii,Oi i1 of μ in (32) as 1−􏰀i∈M1 τi∗. Then, we obtain the optimal dual variable μ∗ through the ellipsoid method (bi-section search in this case) over the range [0,∆], where ∆ is a sufficiently large value, until a prescribed precision requirement is met. Given the optimal μ∗, we denote the optimal ratio obtained from (40) as li (μ∗) 􏰝 r∗ /τ∗, i,O i ∀i ∈ M1. Notice that the optimal solution 􏰕τi∗, r∗ , ∀i ∈ M1􏰖 of the dual problem may not be i,O primal feasible. Therefore, to find a primal optimal solution to (31), we substitute τi = ri,O/li (μ∗) into (31) and simplify the problem as = i li(μ) i li(μ)hi (42) otherwise. Qi (t), /l (μ). After obtaining τ∗, ∀i ∈ M , we calculate the subgradient 􏰁 􏰗ai − Yi(t)g [li(μ∗)]􏰘 ri,O (43a) i ∈ M 1 h i l i ( μ ∗ ) 􏰁 ri,O ≤ 1, ri,O ≤ Qi(t), ∀i ∈ M1. (43b) i∈M1 li(μ∗) The above problem is a simple linear programming (LP) that can be easily solved. With a bit abuse of notation, we denote the optimal solution of (43) as ˆr∗ = 􏰕r∗ , ∀i ∈ M 􏰖 and retrieve 20 the optimal solution to (31) as τ∗=r∗ /l(μ∗),e∗ =τi∗g[li(μ∗)],∀i∈M. (44) i i,O i i,O hili(μ∗) 1 Denote τˆ∗ = {τi∗,∀i ∈ M1} and ˆe∗O = 􏰕e∗i,O,∀i ∈ M1􏰖. As {τˆ∗,ˆe∗O,ˆr∗O,μ∗} satisfies the KKT conditions, {τˆ∗,ˆe∗O,ˆr∗O} is an optimal solution to (31). By combining the optimal solutions in (30) and (44), we obtain an optimal solution of (P4). We summarize the pseudo-code of the O i,O 1 algorithm to solve (P4) in Algorithm 2.,翻译并解释li和hi是什么

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

Vue数字孪生可视化建模系统源码.zip

vueVue数字孪生可视化建模系统源码.zip vueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zip
recommend-type

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。