串口dma接收数据上下两帧一样

时间: 2024-08-14 07:09:33 浏览: 62
串口DMA(Direct Memory Access)接收数据时,如果上一帧和下一帧的数据内容相同,这通常意味着出现了数据循环或者是数据传输过程中出现了错误。DMA是一种硬件辅助的技术,它允许外设直接从输入设备读取数据并将其存储到内存中,而无需CPU干预。 当串口接收到连续两帧数据一致时,可能存在以下原因: 1. 数据源的问题:可能是发送方的数据传输有误,导致重复发送相同的帧。 2. 线路故障:如信号反射、干扰等可能导致数据包被错误地接收和发送。 3. DMA配置问题:如果DMA控制设置不当,可能会导致重复读取同一块内存区域,看起来像是同一帧数据。 4. 软件处理问题:如果接收过程没有正确检查帧头或校验,可能在检测到相同帧后继续读取下一块,造成假象。 为了解决这个问题,你需要检查以下几个方面: 1. 检查发送端是否正常,是否有重复发送。 2. 确认串口通信协议的帧结构,确保每个新帧都有独特的标识。 3. 检查DMA设置,确认它不会自动从同一位置开始读取下一次。 4. 在软件层面添加帧校验或计数,及时发现异常。
相关问题

写一个STM32串口驱动程序

### 回答1: 很高兴为您服务,我可以为您提供一个STM32串口驱动程序的示例: #include <stm32f10x.h> //Define USART1 #define USART1_DR_Base 0x40013804 #define USART1_BRR 0x40013808 #define USART1_CR1 0x4001380C #define USART1_CR2 0x40013810 #define USART1_CR3 0x40013814 #define USART1_GTPR 0x40013818 //Define USART1 Baudrate #define USART1_Baudrate 9600 //Define USART1 GPIO #define USART1_GPIO_TX GPIOA,GPIO_Pin_9 #define USART1_GPIO_RX GPIOA,GPIO_Pin_10 //Define USART1 GPIO Mode #define USART1_GPIO_Mode GPIO_Mode_AF_PP //Define USART1 GPIO Speed #define USART1_GPIO_Speed GPIO_Speed_50MHz //Define USART1 GPIO Remap #define USART1_GPIO_Remap GPIO_Remap_USART1 //Function Prototype void USART1_Init(void); void USART1_SendByte(uint8_t data); uint8_t USART1_ReceiveByte(void); //USART1 Init Function void USART1_Init(void) { //Define Local Variables GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; //Enable USART1 and GPIOA Periph Clock RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); //Configure USART1_TX and USART1_RX Pin GPIO_InitStructure.GPIO_Pin = USART1_GPIO_TX | USART1_GPIO_RX; GPIO_InitStructure.GPIO_Mode = USART1_GPIO_Mode; GPIO_InitStructure.GPIO_Speed = USART1_GPIO_Speed; GPIO_Init(GPIOA, &GPIO_InitStructure); //Remap USART1_TX and USART1_RX GPIO_PinRemapConfig(USART1_GPIO_Remap, ENABLE); //Configure USART1 USART_InitStructure.USART_BaudRate = USART1_Baudrate; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); //Enable USART1 USART_Cmd(USART1, ENABLE); //Configure USART1 NVIC NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } //USART1 Send Byte Function void USART1_SendByte(uint8_t data) { USART_SendData(USART1, data); while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); } //USART1 Receive Byte Function uint8_t USART1_ReceiveByte(void) { while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); return (uint8_t)USART_ReceiveData(USART1); } ### 回答2: STM32是一款集成了多种外设的微控制器,具备强大的串口通信功能。下面是一个简单的STM32串口驱动程序的实现: 首先,需要配置STM32的GPIO引脚作为串口的输入输出引脚。在程序中,可以使用CMSIS库函数来设置引脚功能和模式。 接下来,需要初始化串口。通过设置USARTx寄存器,可以配置波特率、帧格式、停止位、数据位等参数。并使能串口发送和接收功能。 在发送数据时,可以通过USARTx_DR寄存器将数据写入串口发送缓冲区,等待发送。可以使用轮询方式或中断方式发送数据。 在接收数据时,可以通过轮询USARTx_SR寄存器的标志位来判断是否有数据接收。如果有数据接收到,可以通过读取USARTx_DR寄存器来获取接收到的数据。 为了保证数据的完整性和准确性,可以使用中断方式进行接收。通过使能USART接收中断,并实现相应的中断服务函数,在接收到数据时进行处理。 在编写串口驱动程序时,需注意以下几点: 1. 根据所选用的STM32型号和串口模块,查阅对应的参考手册,了解关于串口的寄存器设置、时钟使能和IO配置等相关信息。 2. 根据需求选择合适的波特率、帧格式和数据位数等参数。 3. 注意设置GPIO引脚的输入输出模式、上下拉电阻等。 4. 在发送和接收数据时,需进行错误处理和数据校验,确保数据的正确传输。 5. 可以使用DMA(直接内存访问)来减轻CPU的工作负担,提高数据传输的效率。 以上是一个简单的STM32串口驱动程序的实现步骤和注意事项。当然,实际的驱动程序会更加复杂和详细,涉及到更多的设置和处理。具体的实现方式和细节可能因不同的STM32型号和应用场景而有所差异。 ### 回答3: STM32串口驱动程序是用于控制STM32单片机内部串口模块的程序。下面是一个简单的示例代码: #include "stm32f10x.h" void UART_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; // 使能USART1和GPIOA时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); // 配置USART1的引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART1的参数 USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1, &USART_InitStructure); // 使能USART1 USART_Cmd(USART1, ENABLE); } void UART_SendChar(char ch) { // 等待发送缓冲区为空 while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); // 发送一个字符 USART_SendData(USART1, ch); } char UART_ReceiveChar(void) { // 等待接收缓冲区有数据 while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // 读取接收到的字符 return USART_ReceiveData(USART1); } 在这个例子中,我们使用STM32芯片的USART1模块作为串口模块。UART_Init()函数用来初始化串口,配置串口的引脚和参数;UART_SendChar()函数用来发送一个字符;UART_ReceiveChar()函数用来接收一个字符。 在使用该串口驱动程序时,你需要在main函数中先调用UART_Init()函数初始化串口,然后通过调用UART_SendChar()函数发送字符,调用UART_ReceiveChar()函数接收字符。
阅读全文

相关推荐

最新推荐

recommend-type

DSP28335的McBsp配置为SPI接口的DMA的收发配置程序.docx

在本文中,我们将深入探讨如何在TI的TMS320F28335 DSP上配置McBSP(多通道缓冲串行端口)作为SPI接口,并利用DMA(直接存储器访问)进行数据的发送和接收。TMS320F28335是一款高性能浮点数字信号处理器,广泛应用于...
recommend-type

Python使用线程来接收串口数据的示例

在Python编程中,有时我们需要实时地从串口(Serial Port)接收数据,特别是在处理硬件设备交互、物联网(IoT)项目或嵌入式系统通信时。为了实现这一目标,我们可以利用多线程技术来确保程序的高效运行。本文将详细...
recommend-type

用DMA实现多路ADC通道数据采集

"DMA实现多路ADC通道数据采集" 本文将详细介绍如何使用DMA实现多路ADC通道数据采集,包括STM32的ADC采样、DMA设置和数据采集过程。 DMA和ADC的基本概念 在嵌入式系统中,数据采集是一个非常重要的过程。ADC...
recommend-type

c# 串口通讯如何多次重复发送一帧数据,并且保证发送和回复每一帧数据的顺序正

这个问题主要涉及两个关键点:一是如何多次重复发送同一帧数据并控制重试次数,二是如何保证发送多个数据包时不出现顺序混乱。 1. **多次重复发送一帧数据**: 从给出的代码片段来看,开发人员采用了一个简单的...
recommend-type

Qt串口通信开发之QSerialPort模块Qt串口通信接收数据不完整的解决方法

Qt串口通信开发之QSerialPort模块Qt串口通信接收数据不完整的解决方法 Qt串口通信开发之QSerialPort模块是Qt框架中的一部分,主要用于串口通信的开发。其中,QSerialPort模块提供了串口通信的基本功能,包括串口的...
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。