action = self.actor(state).cpu().data.numpy().flatten().reshape(1, -1)
时间: 2024-06-04 09:06:30 浏览: 102
这段代码是一个深度强化学习中的 actor-critic 算法中,用于获取当前状态的行动概率分布的函数。其中,self.actor 是一个神经网络模型,输入为当前状态 state,输出为行动概率分布。通过调用该神经网络模型,获取当前状态下的行动概率分布,然后将其转换为一个一维数组(flatten)并重新 reshape 为一个 1 行 n 列的矩阵,其中 n 表示行动的数量。最后,使用 cpu() 和 data.numpy() 将结果转换为一个 numpy 数组。这个数组可以被用于产生随机行动、选择最优行动或进行其他后续处理。
相关问题
pytorch 代码实现GCN-DDPG交通
GCN-DDPG交通是一种基于深度强化学习和图卷积网络的交通流量预测算法,以下是其PyTorch代码实现:
首先,导入所需的库:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
from collections import deque
import math
```
然后,定义图卷积网络的类:
```python
class GCN(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(GCN, self).__init__()
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
def forward(self, x, adj):
x = F.relu(self.fc1(torch.matmul(adj, x)))
x = self.fc2(torch.matmul(adj, x))
return x
```
其中,GCN类包含一个线性层和一个ReLU激活函数,用来实现图卷积运算。
接着,定义深度确定性策略梯度算法(DDPG)的类:
```python
class DDPG(object):
def __init__(self, state_dim, action_dim, max_action):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=1e-3)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=1e-3)
self.max_action = max_action
def select_action(self, state):
state = torch.FloatTensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005):
for it in range(iterations):
# Sample replay buffer
x, y, u, r, d = replay_buffer.sample(batch_size)
state = torch.FloatTensor(x).to(device)
action = torch.FloatTensor(u).to(device)
next_state = torch.FloatTensor(y).to(device)
done = torch.FloatTensor(1 - d).to(device)
reward = torch.FloatTensor(r).to(device)
# Compute the target Q value
target_Q = self.critic_target(next_state, self.actor_target(next_state))
target_Q = reward + (done * discount * target_Q).detach()
# Compute the current Q value
current_Q = self.critic(state, action)
# Compute the critic loss
critic_loss = F.mse_loss(current_Q, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Compute actor loss
actor_loss = -self.critic(state, self.actor(state)).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the target networks
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
```
其中,DDPG类包含一个演员(Actor)和一个评论家(Critic),用来实现深度确定性策略梯度算法。演员网络(Actor)用来预测下一步的交通流量,评论家网络(Critic)用来评估演员网络输出的动作。
最后,定义经验回放缓存器(Experience Replay Buffer)的类:
```python
class ReplayBuffer(object):
def __init__(self, max_size=1000000):
self.buffer = deque(maxlen=max_size)
def add(self, state, next_state, action, reward, done):
self.buffer.append((state, next_state, action, reward, done))
def sample(self, batch_size):
state, next_state, action, reward, done = zip(*random.sample(self.buffer, batch_size))
return np.concatenate(state), np.concatenate(next_state), np.concatenate(action), np.array(reward).reshape(-1,
1), np.array(
done).reshape(-1, 1)
```
其中,ReplayBuffer类用来存储交互数据,以便后续训练使用。
以上就是PyTorch代码实现GCN-DDPG交通流量预测的全部内容。
阅读全文