梅尔倒谱特征提取预处理matlab程序
时间: 2024-04-08 10:27:50 浏览: 217
梅尔倒谱系数(Mel-frequency cepstral coefficients,MFCC)是一种常用的语音信号特征提取方法,常用于语音识别和语音处理领域。下面是一个用MATLAB实现的梅尔倒谱特征提取的预处理程序的示例:
```matlab
% 读取语音信号
[s, fs] = audioread('speech.wav');
% 预加重
pre_emphasis = [1, -0.97];
s_pre = filter(1, pre_emphasis, s);
% 分帧
frame_length = 0.025; % 帧长(秒)
frame_shift = 0.01; % 帧移(秒)
frame_length_sample = round(frame_length * fs); % 帧长(采样点)
frame_shift_sample = round(frame_shift * fs); % 帧移(采样点)
num_frames = floor((length(s_pre) - frame_length_sample) / frame_shift_sample) + 1;
frames = zeros(frame_length_sample, num_frames);
for i = 1:num_frames
start_index = (i - 1) * frame_shift_sample + 1;
end_index = start_index + frame_length_sample - 1;
frames(:, i) = s_pre(start_index:end_index);
end
% 加窗
window = hamming(frame_length_sample);
frames_windowed = frames .* window;
% 傅里叶变换
NFFT = 2^nextpow2(frame_length_sample);
frames_fft = fft(frames_windowed, NFFT);
% 梅尔滤波器组
num_filters = 26; % 滤波器个数
mel_filters = melFilterBank(fs, NFFT, num_filters);
% 梅尔倒谱系数计算
mfccs = zeros(num_filters, num_frames);
for i = 1:num_frames
frame_fft = frames_fft(:, i);
frame_power = abs(frame_fft).^2;
mel_energies = mel_filters * frame_power;
log_energies = log10(mel_energies);
mfccs(:, i) = dct(log_energies);
end
% 取前12个MFCC系数
mfccs = mfccs(1:12, :);
% 归一化
mfccs = (mfccs - mean(mfccs(:))) / std(mfccs(:));
% 输出MFCC特征
disp(mfccs);
```
这个程序实现了梅尔倒谱特征提取的预处理过程,包括预加重、分帧、加窗、傅里叶变换、梅尔滤波器组的计算、梅尔倒谱系数的计算、取前12个MFCC系数以及归一化处理。你可以将语音信号保存为'speech.wav'文件,然后运行这个程序来提取MFCC特征。
阅读全文