flume 执行mapreduce代码
时间: 2023-09-15 14:21:31 浏览: 120
Flume是一个数据收集、聚合和移动系统,它可以将海量的数据从各种来源汇集到HDFS或其他存储系统中。Flume与MapReduce没有直接关系,但是可以使用Flume来收集数据并将其转发到HDFS或其他存储系统,然后使用MapReduce来处理该数据。
以下是使用Flume收集数据并使用MapReduce处理数据的一般步骤:
1. 配置Flume agent以收集数据并将其发送到HDFS或其他存储系统中。
2. 创建MapReduce作业以处理从Flume收集的数据。这可以包括编写Mapper和Reducer类、配置输入和输出格式等。
3. 使用Hadoop命令提交MapReduce作业。
以下是一个示例Flume配置文件,将数据发送到HDFS:
```
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://localhost:9000/user/flume/data/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.fileType = DataStream
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
```
此配置文件指定将从netcat源收集的数据写入HDFS的/user/flume/data/目录中。在此示例中,我们使用了hdfs sink,它将数据以DataStream格式写入HDFS。其他可用的sink类型包括file、avro、logger和null。
接下来,您需要编写MapReduce作业来处理从Flume收集的数据。例如,以下是一个简单的WordCount程序,它计算HDFS中的文本文件中的单词频率:
```
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
public class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
最后,您可以使用hadoop命令将MapReduce作业提交到集群中:
```
hadoop jar wordcount.jar WordCount /user/flume/data/ /user/flume/output/
```
这将读取从Flume收集的数据,并在HDFS的/user/flume/output/目录中输出单词计数结果。
阅读全文