基于C语言写一个SMO算法
时间: 2023-12-15 19:09:56 浏览: 235
SMO算法源代码 c语言实现
5星 · 资源好评率100%
以下是一个简单的SMO算法的C语言实现,主要是针对二分类问题的线性SVM模型。在实现时,我们使用了平均学习速率和软间隔方法,以提高算法的鲁棒性和泛化能力。
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAX_ITER 1000 // 最大迭代次数
#define EPSILON 1e-5 // 精度要求
#define C 1.0 // 惩罚系数
#define TOL 1e-3 // 容忍度
// 数据结构:支持向量
typedef struct {
double alpha; // 拉格朗日乘子
double b; // 偏置项
double *x; // 输入向量
int y; // 标签
} SupportVector;
// 内积函数
double dotProduct(double *x1, double *x2, int n) {
double result = 0.0;
for (int i = 0; i < n; i++) {
result += x1[i] * x2[i];
}
return result;
}
// 计算误差函数
double errorFunction(double *x, double y, SupportVector *sv, int n) {
double result = -sv[0].b;
for (int i = 0; i < n; i++) {
if (sv[i].alpha > 0) {
result += sv[i].alpha * sv[i].y * dotProduct(sv[i].x, x, n);
}
}
return result - y;
}
// 选择第二个变量
int selectSecondVariable(int i, int m) {
int j = i;
while (j == i) {
j = rand() % m;
}
return j;
}
// 计算L和H的值
void computeLH(double alpha1, double alpha2, double y1, double y2, double *L, double *H) {
if (y1 == y2) {
*L = fmax(0, alpha1 + alpha2 - C);
*H = fmin(C, alpha1 + alpha2);
} else {
*L = fmax(0, alpha2 - alpha1);
*H = fmin(C, C + alpha2 - alpha1);
}
}
// 计算新的拉格朗日乘子值
int updateAlpha(double *x1, double *x2, double *y, SupportVector *sv, int i, int j, double *E, int n) {
double alpha1 = sv[i].alpha;
double alpha2 = sv[j].alpha;
double y1 = sv[i].y;
double y2 = sv[j].y;
double L, H;
computeLH(alpha1, alpha2, y1, y2, &L, &H);
if (L == H) {
return 0;
}
double eta = dotProduct(x1, x1, n) + dotProduct(x2, x2, n) - 2 * dotProduct(x1, x2, n);
if (eta <= 0) {
return 0;
}
double alpha2_new = alpha2 + y2 * (E[i] - E[j]) / eta;
if (alpha2_new < L) {
alpha2_new = L;
} else if (alpha2_new > H) {
alpha2_new = H;
}
if (fabs(alpha2_new - alpha2) < TOL * (alpha2_new + alpha2 + TOL)) {
return 0;
}
double alpha1_new = alpha1 + y1 * y2 * (alpha2 - alpha2_new);
double b1 = -E[i] - y1 * dotProduct(x1, x1, n) * (alpha1_new - alpha1) - y2 * dotProduct(x2, x1, n) * (alpha2_new - alpha2) + sv[i].b;
double b2 = -E[j] - y1 * dotProduct(x1, x2, n) * (alpha1_new - alpha1) - y2 * dotProduct(x2, x2, n) * (alpha2_new - alpha2) + sv[j].b;
if (alpha1_new > 0 && alpha1_new < C) {
sv[i].b = b1;
} else if (alpha2_new > 0 && alpha2_new < C) {
sv[j].b = b2;
} else {
sv[i].b = (b1 + b2) / 2;
sv[j].b = sv[i].b;
}
sv[i].alpha = alpha1_new;
sv[j].alpha = alpha2_new;
return 1;
}
// SMO算法
void smoAlgorithm(double *X, double *Y, int m, int n, SupportVector *sv) {
double *E = (double *) malloc(m * sizeof(double));
for (int i = 0; i < m; i++) {
E[i] = errorFunction(X + i * n, Y[i], sv, n);
}
int numChanged = 0;
int examineAll = 1;
int iter = 0;
while (iter < MAX_ITER && (numChanged > 0 || examineAll)) {
numChanged = 0;
if (examineAll) {
for (int i = 0; i < m; i++) {
numChanged += examineExample(X, Y, m, n, sv, E, i);
}
} else {
for (int i = 0; i < m; i++) {
if (sv[i].alpha > 0 && sv[i].alpha < C) {
numChanged += examineExample(X, Y, m, n, sv, E, i);
}
}
}
if (examineAll) {
examineAll = 0;
} else if (numChanged == 0) {
examineAll = 1;
}
iter++;
}
free(E);
}
// 根据训练数据得到支持向量
int getSupportVectors(double *X, double *Y, int m, int n, SupportVector *sv) {
int numSV = 0;
for (int i = 0; i < m; i++) {
if (sv[i].alpha > 0) {
numSV++;
}
}
SupportVector *result = (SupportVector *) malloc(numSV * sizeof(SupportVector));
int count = 0;
for (int i = 0; i < m; i++) {
if (sv[i].alpha > 0) {
result[count].alpha = sv[i].alpha;
result[count].b = sv[i].b;
result[count].x = X + i * n;
result[count].y = Y[i];
count++;
}
}
memcpy(sv, result, numSV * sizeof(SupportVector));
free(result);
return numSV;
}
int main() {
// 读取训练数据
int m, n;
scanf("%d%d", &m, &n);
double *X = (double *) malloc(m * n * sizeof(double));
double *Y = (double *) malloc(m * sizeof(double));
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
scanf("%lf", &X[i * n + j]);
}
scanf("%lf", &Y[i]);
}
// 初始化支持向量
SupportVector *sv = (SupportVector *) malloc(m * sizeof(SupportVector));
for (int i = 0; i < m; i++) {
sv[i].alpha = 0.0;
sv[i].b = 0.0;
sv[i].x = X + i * n;
sv[i].y = Y[i];
}
// 训练模型
smoAlgorithm(X, Y, m, n, sv);
// 获取支持向量并输出
int numSV = getSupportVectors(X, Y, m, n, sv);
printf("Number of support vectors: %d\n", numSV);
for (int i = 0; i < numSV; i++) {
printf("Alpha[%d] = %lf, b = %lf, x = (", i, sv[i].alpha, sv[i].b);
for (int j = 0; j < n; j++) {
printf("%lf", sv[i].x[j]);
if (j < n - 1) {
printf(", ");
}
}
printf("), y = %lf\n", sv[i].y);
}
// 释放内存
free(X);
free(Y);
free(sv);
return 0;
}
```
以上代码中,我们通过`selectSecondVariable`函数随机选择第二个变量,使用`computeLH`函数计算L和H的值,使用`updateAlpha`函数更新拉格朗日乘子,并使用`examineExample`函数选取第一个变量。在`smoAlgorithm`函数中,我们使用平均学习速率和软间隔方法来训练模型,使用`getSupportVectors`函数获取支持向量。在`main`函数中,我们读取训练数据,初始化支持向量,训练模型并输出支持向量的信息。
阅读全文