%% testing if (strcmp(task, 'test')) if(isempty(direct_test) || length(direct_test) == 1) load(['../EXEM_CV_results/EXEM_classCV_' dataset '_split' num2str(opt.ind_split) '_' feature_name '_' norm_method '.mat'],... 'val_dis_eu', 'val_dis_seu', 'val_acc_eu', 'val_acc_seu', 'opt'); if (strcmp(test_type, 'dis_eu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(-val_dis_eu, direct_test); elseif (strcmp(test_type, 'dis_seu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(-val_dis_seu, direct_test); elseif (strcmp(test_type, 'acc_eu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(val_acc_eu, direct_test); elseif (strcmp(test_type, 'acc_seu')) [loc_C, loc_nu, loc_gamma, loc_pca_d] = find_max(val_acc_seu, direct_test); else disp('Wrong test type!'); return; end C = opt.C(loc_C(1)); nu = opt.nu(loc_nu(1)); gamma = opt.gamma(loc_gamma(1)); pca_d = opt.pca_d(loc_pca_d(1)); disp([loc_C(1), loc_nu(1), loc_gamma(1), loc_pca_d(1)]); else C = direct_test(1); nu = direct_test(2); gamma = direct_test(3); pca_d = direct_test(4); end Sig_Ytr = Sig_Y(unique(Ytr), :); Sig_Yte = Sig_Y(unique(Yte), :);
时间: 2024-04-12 17:34:29 浏览: 92
这段代码是用于进行测试的部分。
首先判断是否为测试任务(`task`为'test')。如果是,则执行以下操作:
1. 如果`direct_test`为空或长度为1,则加载之前保存的交叉验证结果和参数设置。使用`load`函数从MAT文件中加载`val_dis_eu`、`val_dis_seu`、`val_acc_eu`、`val_acc_seu`和`opt`变量。这些变量保存了交叉验证过程中的评估结果和参数设置。
2. 根据`test_type`的值,调用`find_max`函数找到在测试类型下具有最大值的索引。如果`test_type`为'dis_eu',则在-val_dis_eu中找到最大值的索引;如果为'dis_seu',则在-val_dis_seu中找到最大值的索引;如果为'acc_eu',则在val_acc_eu中找到最大值的索引;如果为'acc_seu',则在val_acc_seu中找到最大值的索引。
3. 根据找到的最大值的索引,获取对应的C、nu、gamma和pca_d参数值。
4. 显示找到的最大值的索引,用于输出结果。
5. 若`direct_test`不为空且长度为4,则直接使用`direct_test`中指定的C、nu、gamma和pca_d参数值。
6. 根据训练数据集标签Ytr,在Sig_Y中选择对应类别的特征向量,得到Sig_Ytr。
7. 根据测试数据集标签Yte,在Sig_Y中选择对应类别的特征向量,得到Sig_Yte。
这段代码的目的是根据测试任务的要求,选择合适的参数设置,并获取相应的训练和测试数据集的特征向量。如果直接指定了测试参数,则使用指定的参数进行测试;否则,根据交叉验证结果选择最优参数进行测试。
阅读全文