掌握交叉验证的使用。使用交叉验证评估某个K近邻算法的性能
时间: 2024-04-02 08:11:54 浏览: 52
好的,下面是一个基本的 K 近邻算法的交叉验证评估过程:
1. 导入需要的库
```python
import numpy as np
from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_iris
```
2. 加载数据集
```python
data = load_iris()
X = data.data
y = data.target
```
3. 定义 K 近邻算法模型,并设置需要测试的 k 值
```python
model = KNeighborsClassifier()
k_values = [1, 3, 5, 7, 9]
```
4. 定义交叉验证的参数
```python
n_folds = 5
kf = KFold(n_splits=n_folds, shuffle=True, random_state=42)
```
5. 对每个 k 值进行交叉验证,并输出平均准确率
```python
for k in k_values:
accuracies = []
for train_index, test_index in kf.split(X):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
model.n_neighbors = k
model.fit(X_train, y_train)
accuracies.append(model.score(X_test, y_test))
print(f"K = {k}, Average Accuracy = {np.mean(accuracies)}")
```
在上述代码中,我们使用了 5 折交叉验证,对每个 k 值进行了 5 次训练和测试,最后输出了每个 k 值的平均准确率。
阅读全文