使用鸢尾花数据集写含三层rbm的dbn代码
时间: 2023-10-24 08:10:45 浏览: 150
好的,以下是使用鸢尾花数据集构建含三层RBM的DBN的Python代码:
```python
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
from sklearn.utils import shuffle
class RBM:
def __init__(self, num_visible, num_hidden, learning_rate=0.1, momentum=0.9, k=1):
self.num_visible = num_visible
self.num_hidden = num_hidden
self.learning_rate = learning_rate
self.momentum = momentum
self.k = k
self.weights = np.random.normal(scale=0.01, size=(num_visible, num_hidden))
self.visible_bias = np.zeros(num_visible)
self.hidden_bias = np.zeros(num_hidden)
self.delta_weights = np.zeros_like(self.weights)
self.delta_visible_bias = np.zeros_like(self.visible_bias)
self.delta_hidden_bias = np.zeros_like(self.hidden_bias)
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def contrastive_divergence(self, x):
# Positive phase
hidden_prob = self.sigmoid(np.dot(x, self.weights) + self.hidden_bias)
hidden_state = np.random.binomial(1, hidden_prob)
positive_grad = np.dot(x.T, hidden_prob)
# Negative phase
visible_prob = self.sigmoid(np.dot(hidden_state, self.weights.T) + self.visible_bias)
for i in range(self.k):
hidden_prob = self.sigmoid(np.dot(visible_prob, self.weights) + self.hidden_bias)
hidden_state = np.random.binomial(1, hidden_prob)
visible_prob = self.sigmoid(np.dot(hidden_state, self.weights.T) + self.visible_bias)
negative_grad = np.dot(visible_prob.T, hidden_prob)
# Update weights and biases
self.delta_weights = self.learning_rate * (positive_grad - negative_grad) / x.shape[0] + self.momentum * self.delta_weights
self.weights += self.delta_weights
self.delta_visible_bias = self.learning_rate * np.mean(x - visible_prob, axis=0) + self.momentum * self.delta_visible_bias
self.visible_bias += self.delta_visible_bias
self.delta_hidden_bias = self.learning_rate * np.mean(hidden_prob - hidden_state, axis=0) + self.momentum * self.delta_hidden_bias
self.hidden_bias += self.delta_hidden_bias
def transform(self, x):
return self.sigmoid(np.dot(x, self.weights) + self.hidden_bias)
class DBN:
def __init__(self, layers):
self.layers = layers
self.rbms = [RBM(layers[i], layers[i+1]) for i in range(len(layers)-1)]
def pretrain(self, x, batch_size=32, epochs=100):
for rbm in self.rbms:
for epoch in range(epochs):
x = shuffle(x)
for i in range(0, x.shape[0], batch_size):
batch = x[i:i+batch_size]
rbm.contrastive_divergence(batch)
print("Pretraining layer with shape {} epoch {} complete".format(rbm.weights.shape, epoch+1))
x = rbm.transform(x)
def finetune(self, x, y, batch_size=32, epochs=100, lr=0.1):
scaler = StandardScaler()
x = scaler.fit_transform(x)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
for epoch in range(epochs):
x_train = shuffle(x_train)
for i in range(0, x_train.shape[0], batch_size):
batch_x = x_train[i:i+batch_size]
batch_y = y_train[i:i+batch_size]
activations = self.feedforward(batch_x)
activations[-1] = np.exp(activations[-1]) / np.sum(np.exp(activations[-1]), axis=1, keepdims=True)
output_error = activations[-1] - batch_y
delta = output_error
for j in range(len(self.layers)-2, -1, -1):
delta = np.dot(delta, self.rbms[j+1].weights.T) * activations[j] * (1 - activations[j])
self.rbms[j].delta_weights = lr * np.dot(activations[j].T, delta) / batch_x.shape[0]
self.rbms[j].weights += self.rbms[j].delta_weights
self.rbms[j].delta_hidden_bias = lr * np.mean(delta, axis=0)
self.rbms[j].hidden_bias += self.rbms[j].delta_hidden_bias
y_pred = self.predict(x_test)
acc = accuracy_score(y_test, y_pred)
print("Epoch {} complete, accuracy: {}".format(epoch+1, acc))
def feedforward(self, x):
activations = []
for rbm in self.rbms:
x = rbm.transform(x)
activations.append(x)
return activations
def predict(self, x):
activations = self.feedforward(x)
activations[-1] = np.exp(activations[-1]) / np.sum(np.exp(activations[-1]), axis=1, keepdims=True)
return np.argmax(activations[-1], axis=1)
if __name__ == '__main__':
iris = load_iris()
x = iris.data
y = iris.target
np.random.seed(42)
dbn = DBN([x.shape[1], 64, 32, 3])
dbn.pretrain(x)
dbn.finetune(x, np.eye(3)[y])
```
这个代码使用了三层RBM,第一层有4个可见节点,第二层有64个隐藏节点,第三层有32个隐藏节点,最后一层有3个输出节点,对应鸢尾花数据集的三个类别。在预训练阶段,我们使用随机梯度下降对每层的RBM进行训练,每次迭代都会对整个数据集进行一次随机洗牌,并将数据分成大小为32的小批量进行训练。在微调阶段,我们使用标准缩放对输入数据进行预处理,将数据分成训练集和测试集,使用交叉熵损失函数和带动量的随机梯度下降对整个网络进行训练。
阅读全文