mae python实现_使用Python进行机器学习:从0到1,构建回归模型(附完整教程)

时间: 2023-06-19 08:04:53 浏览: 194
一、前言 机器学习是人工智能的一个分支,也是目前最热门的技术之一。Python 作为一种高效、易用、灵活的编程语言,已经成为机器学习领域的主流编程语言。 本文将介绍如何使用 Python 进行机器学习,主要包括以下内容: 1.什么是机器学习 2.机器学习的分类 3.机器学习的基本步骤 4.使用 Python 进行机器学习的工具包 5.构建回归模型 二、什么是机器学习 机器学习是指通过对数据的学习和分析,从而使计算机系统能够自动提高性能的一种方法。简单来说,就是让计算机能够自动地从数据中学习信息,而不是由程序员手动编写规则。 机器学习通常可以分为三个步骤:训练、验证和测试。在训练阶段,机器学习系统通过对标记有正确答案的数据进行学习,从而建立一个模型。在验证阶段,系统使用另一组数据来评估模型的性能。在测试阶段,系统使用完全不同的数据来测试模型的性能。 三、机器学习的分类 机器学习可以分为监督学习、无监督学习和强化学习。 1.监督学习:监督学习是基于标记数据的学习方法,也就是说,训练数据集中每个样本都标记有正确答案。监督学习通常用于分类和回归问题。 2.无监督学习:无监督学习是基于未标记数据的学习方法,也就是说,训练数据集中每个样本都没有标记。无监督学习通常用于聚类、降维等问题。 3.强化学习:强化学习是一种基于奖励的学习方法,也就是说,系统通过与环境交互来学习如何最大化收益。强化学习通常用于游戏、自动驾驶等问题。 四、机器学习的基本步骤 机器学习通常包括以下步骤: 1.收集数据:收集和准备用于训练和测试模型的数据。 2.准备数据:对数据进行清洗、转换、缩放等操作,以便于模型的学习和使用。 3.选择模型:选择适合问题的模型,例如线性回归、支持向量机、朴素贝叶斯等。 4.训练模型:使用训练数据集来训练模型,并调整模型的超参数。 5.评估模型:使用验证数据集来评估模型的性能,并进行调整。 6.测试模型:使用测试数据集来测试模型的性能。 7.使用模型:使用模型来对新数据进行预测或分类等操作。 五、使用 Python 进行机器学习的工具包 Python 有很多优秀的机器学习工具包,包括: 1.scikit-learn:scikit-learn 是 Python 机器学习的核心工具包之一,它包含了大量的机器学习算法和统计工具。 2.TensorFlow:TensorFlow 是 Google 开源的机器学习框架,它可以用于构建神经网络、深度学习等模型。 3.Keras:Keras 是一个高层次的神经网络 API,它可以在 TensorFlow、Theano、CNTK 等后端上运行。 4.PyTorch:PyTorch 是 Facebook 开源的机器学习框架,它可以用于构建神经网络、深度学习等模型。 5.Pandas:Pandas 是一个数据分析工具包,它可以用于数据的读取、清洗、转换等操作。 在本文中,我们将使用 scikit-learn 和 Pandas 来构建回归模型。 六、构建回归模型 回归模型是一种用于预测数值型输出的模型。在本文中,我们将使用线性回归模型来预测波士顿房价。 1.准备数据 我们将使用 scikit-learn 中的波士顿房价数据集,该数据集包含了波士顿地区的房屋价格和房屋特征。我们可以使用 Pandas 将数据集读取为一个 DataFrame。 ``` import pandas as pd from sklearn.datasets import load_boston boston = load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) df['target'] = boston.target ``` 2.数据清洗和特征选择 我们需要对数据进行清洗和特征选择,以便于模型的学习和使用。在这里,我们将使用所有的特征,并对数据进行缩放。 ``` from sklearn.preprocessing import StandardScaler X = df.drop('target', axis=1) y = df['target'] scaler = StandardScaler() X = scaler.fit_transform(X) ``` 3.划分数据集 我们将数据集划分为训练集和测试集,其中训练集占 80%,测试集占 20%。 ``` from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 4.训练模型 我们使用 scikit-learn 中的 LinearRegression 模型来训练模型。 ``` from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X_train, y_train) ``` 5.评估模型 我们使用测试集来评估模型的性能。 ``` from sklearn.metrics import mean_squared_error y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) ``` 6.使用模型 我们可以使用模型来对新数据进行预测。 ``` import numpy as np new_data = np.array([[0.00632, 18.0, 2.31, 0.0, 0.538, 6.575, 65.2, 4.0900, 1.0, 296.0, 15.3, 396.90, 4.98]]) new_data = scaler.transform(new_data) pred = model.predict(new_data) print('Prediction:', pred) ``` 完整代码如下: ``` import pandas as pd import numpy as np from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 准备数据 boston = load_boston() df = pd.DataFrame(boston.data, columns=boston.feature_names) df['target'] = boston.target # 数据清洗和特征选择 X = df.drop('target', axis=1) y = df['target'] scaler = StandardScaler() X = scaler.fit_transform(X) # 划分数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 model = LinearRegression() model.fit(X_train, y_train) # 评估模型 y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) print('MSE:', mse) # 使用模型 new_data = np.array([[0.00632, 18.0, 2.31, 0.0, 0.538, 6.575, 65.2, 4.0900, 1.0, 296.0, 15.3, 396.90, 4.98]]) new_data = scaler.transform(new_data) pred = model.predict(new_data) print('Prediction:', pred) ``` 本文介绍了如何使用 Python 进行机器学习,主要包括了机器学习的基础知识、使用 Python 进行机器学习的工具包和构建回归模型的完整教程。希望本文能够帮助读者更好地理解机器学习,并在实践中取得更好的效果。
阅读全文

相关推荐

最新推荐

recommend-type

python之MSE、MAE、RMSE的使用

在数据分析和机器学习领域,评估模型性能是至关重要的一步,其中MSE(均方误差)、MAE(平均绝对误差)和RMSE(均方根误差)是常用的衡量预测误差的标准。下面将详细介绍这三个指标以及它们在Python中的计算方法。 ...
recommend-type

《机器学习》第一次大作业实验报告.docx

《机器学习》第一次大作业实验报告详尽地探讨了机器学习中的分类和回归任务,涉及了四个关键模型:逻辑回归、决策树、神经网络和支持向量机。实验旨在通过对比不同模型在不同参数下的性能,来理解这些模型在解决实际...
recommend-type

原生js图片圆形排列按钮控制3D旋转切换插件.zip

原生js图片圆形排列按钮控制3D旋转切换插件.zip
recommend-type

类似c++数组的python包

内含二维数组与三维数组,分别为list2nd,list3rd
recommend-type

俄罗斯RTSD数据集实现交通标志实时检测

资源摘要信息:"实时交通标志检测" 在当今社会,随着道路网络的不断扩展和汽车数量的急剧增加,交通标志的正确识别对于驾驶安全具有极其重要的意义。为了提升自动驾驶汽车或辅助驾驶系统的性能,研究者们开发了各种算法来实现实时交通标志检测。本文将详细介绍一项关于实时交通标志检测的研究工作及其相关技术和应用。 ### 俄罗斯交通标志数据集(RTSD) 俄罗斯交通标志数据集(RTSD)是专门为训练和测试交通标志识别算法而设计的数据集。数据集内容丰富,包含了大量的带标记帧、交通符号类别、实际的物理交通标志以及符号图像。具体来看,数据集提供了以下重要信息: - 179138个带标记的帧:这些帧来源于实际的道路视频,每个帧中可能包含一个或多个交通标志,每个标志都经过了精确的标注和分类。 - 156个符号类别:涵盖了俄罗斯境内常用的各种交通标志,每个类别都有对应的图像样本。 - 15630个物理符号:这些是实际存在的交通标志实物,用于训练和验证算法的准确性。 - 104358个符号图像:这是一系列经过人工标记的交通标志图片,可以用于机器学习模型的训练。 ### 实时交通标志检测模型 在该领域中,深度学习模型尤其是卷积神经网络(CNN)已经成为实现交通标志检测的关键技术。在描述中提到了使用了yolo4-tiny模型。YOLO(You Only Look Once)是一种流行的实时目标检测系统,YOLO4-tiny是YOLO系列的一个轻量级版本,它在保持较高准确率的同时大幅度减少计算资源的需求,适合在嵌入式设备或具有计算能力限制的环境中使用。 ### YOLO4-tiny模型的特性和优势 - **实时性**:YOLO模型能够实时检测图像中的对象,处理速度远超传统的目标检测算法。 - **准确性**:尽管是轻量级模型,YOLO4-tiny在多数情况下仍能保持较高的检测准确性。 - **易集成**:适用于各种应用,包括移动设备和嵌入式系统,易于集成到不同的项目中。 - **可扩展性**:模型可以针对特定的应用场景进行微调,提高特定类别目标的检测精度。 ### 应用场景 实时交通标志检测技术的应用范围非常广泛,包括但不限于: - 自动驾驶汽车:在自动驾驶系统中,能够实时准确地识别交通标志是保证行车安全的基础。 - 智能交通系统:交通标志的实时检测可以用于交通流量监控、违规检测等。 - 辅助驾驶系统:在辅助驾驶系统中,交通标志的自动检测可以帮助驾驶员更好地遵守交通规则,提升行驶安全。 - 车辆导航系统:通过实时识别交通标志,导航系统可以提供更加精确的路线规划和预警服务。 ### 关键技术点 - **图像处理技术**:包括图像采集、预处理、增强等步骤,为后续的识别模型提供高质量的输入。 - **深度学习技术**:利用深度学习尤其是卷积神经网络(CNN)进行特征提取和模式识别。 - **数据集构建**:构建大规模、多样化的高质量数据集对于训练准确的模型至关重要。 ### 结论 本文介绍的俄罗斯交通标志数据集以及使用YOLO4-tiny模型进行实时交通标志检测的研究工作,显示了在该领域应用最新技术的可能性。随着计算机视觉技术的不断进步,实时交通标志检测算法将变得更加准确和高效,进一步推动自动驾驶和智能交通的发展。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

预测区间与置信区间:机器学习中的差异与联系

# 1. 机器学习中的统计基础 在当今数据驱动的时代,机器学习已经成为了理解大数据的关键途径。在这一章节中,我们将探索机器学习与统计学之间密不可分的关系,重点介绍统计学在机器学习中的核心地位及其应用。我们将从最基本的统计概念入手,为读者建立起机器学习中的统计基础。 ## 1.1 统计学的核心概念 统计学为我们提供了一套强大的工具,用以描述、分析以及从数据中得出结论。核心概念包括均值、方差、标准差等描述性统计指标,它们是理解数据集基本特征的关键。 ## 1.2 统计推断基础 统计推断是建立在概率论基础上的,允许我们在有限的数据样本上做出关于整体的结论。我们将解释置信区间和假设检验等基本概念
recommend-type

基于KNN通过摄像头实现0-9的识别python代码

基于KNN(K-Nearest Neighbors,最近邻算法)实现摄像头实时抓取图像并识别0-9数字的Python代码需要几个步骤,包括数据预处理、训练模型和实际应用。这里是一个简化版本的示例: ```python # 导入必要的库 import cv2 from sklearn.neighbors import KNeighborsClassifier import numpy as np # 数据预处理:假设你已经有一个包含手写数字的训练集 # 这里只是一个简化的例子,实际情况下你需要一个完整的图像数据集 # X_train (特征矩阵) 和 y_train (标签) X_train
recommend-type

易语言开发的文件批量改名工具使用Ex_Dui美化界面

资源摘要信息:"文件批量改名工具-易语言"是一个专门用于批量修改文件名的软件工具,它采用的编程语言是“易语言”,该语言是为中文用户设计的,其特点是使用中文作为编程关键字,使得中文用户能够更加容易地编写程序代码。该工具在用户界面上使用了Ex_Dui库进行美化,Ex_Dui是一个基于易语言开发的UI界面库,能够让开发的应用程序界面更美观、更具有现代感,增加了用户体验的舒适度。 【易语言知识点】: 易语言是一种简单易学的编程语言,特别适合没有编程基础的初学者。它采用了全中文的关键字和语法结构,支持面向对象的编程方式。易语言支持Windows平台的应用开发,并且可以轻松调用Windows API,实现复杂的功能。易语言的开发环境提供了丰富的组件和模块,使得开发各种应用程序变得更加高效。 【Ex_Dui知识点】: Ex_Dui是一个专为易语言设计的UI(用户界面)库,它为易语言开发的应用程序提供了大量的预制控件和风格,允许开发者快速地制作出外观漂亮、操作流畅的界面。使用Ex_Dui库可以避免编写繁琐的界面绘制代码,提高开发效率,同时使得最终的软件产品能够更加吸引用户。 【开源大赛知识点】: 2019开源大赛(第四届)是指在2019年举行的第四届开源软件开发竞赛活动。这类活动通常由开源社区或相关组织举办,旨在鼓励开发者贡献开源项目,推广开源文化和技术交流,提高软件开发的透明度和协作性。参与开源大赛的作品往往需要遵循开放源代码的许可协议,允许其他开发者自由使用、修改和分发代码。 【压缩包子文件的文件名称列表知识点】: 文件名称列表中包含了几个关键文件: - libexdui.dll:这显然是一个动态链接库文件,即DLL文件,它是由Ex_Dui库提供的,用于提供程序运行时所需的库函数和资源。DLL文件可以让程序调用相应的函数,实现特定的功能。 - 文件批量改名工具.e:这可能是易语言编写的主程序文件,带有.e扩展名,表明它是一个易语言源代码文件。 - Default.ext:这个文件名没有给出具体扩展名,可能是一个配置文件或默认设置文件,用户可以通过修改它来自定义软件的行为。 - Source:这可能是一个包含易语言源代码的目录,里面应该包含了文件批量改名工具的源代码,供开发者阅读和学习。 - Res:这个目录通常用于存放资源文件,如图形、声音等。在易语言项目中,Res目录下可能存放了程序运行所需的各种资源文件。 通过对标题、描述、标签以及文件名列表的分析,我们可以了解到这款文件批量改名工具采用了易语言编程,并且界面通过Ex_Dui库进行美化。它可能被提交到了2019年第四届开源大赛中,是开发者为用户提供的一个实用工具,用于提高处理文件时的效率。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依