class ChannelAttention(layers.Layer): def __init__(self, in_planes, ratio=32): super(ChannelAttention, self).__init__() self.avg= layers.GlobalAveragePooling2D() self.max= layers.GlobalMaxPooling2D() self.conv1 = layers.Conv2D(in_planes//ratio, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, activation=tf.nn.relu) self.conv2 = layers.Conv2D(in_planes, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True) def call(self, inputs): avg = self.avg(inputs) max = self.max(inputs) avg = layers.Reshape((1, 1, avg.shape[1]))(avg) # shape (None, 1, 1 feature) max = layers.Reshape((1, 1, max.shape[1]))(max) # shape (None, 1, 1 feature) avg_out = self.conv2(self.conv1(avg)) max_out = self.conv2(self.conv1(max)) out = avg_out + max_out out = tf.nn.sigmoid(out) return out
时间: 2024-04-27 07:23:34 浏览: 87
channel-attention
这段代码实现了通道注意力机制。首先在 `__init__` 函数中定义了一个全局平均池化和一个全局最大池化,然后通过两个卷积层和一个 sigmoid 函数将平均池化和最大池化的结果融合起来,最后输出一个通道注意力权重矩阵。在 `call` 函数中,先将输入通过全局平均池化和全局最大池化得到两个结果,然后分别经过卷积层并相加,最后通过 sigmoid 函数得到通道注意力权重矩阵,返回结果。这段代码本身看起来没有语法错误,但需要在调用这个类时传入正确的参数才能保证功能正确。
阅读全文