class ChannelAttention(layers.Layer): def __init__(self, in_planes, ratio=32): super(ChannelAttention, self).__init__() self.avg= layers.GlobalAveragePooling2D() self.max= layers.GlobalMaxPooling2D() self.conv1 = layers.Conv2D(in_planes//ratio, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True, activation=tf.nn.relu) self.conv2 = layers.Conv2D(in_planes, kernel_size=1, strides=1, padding='same', kernel_regularizer=regularizers.l2(5e-4), use_bias=True) def call(self, inputs): avg = self.avg(inputs) max = self.max(inputs) avg = layers.Reshape((1, 1, avg.shape[1]))(avg) # shape (None, 1, 1 feature) max = layers.Reshape((1, 1, max.shape[1]))(max) # shape (None, 1, 1 feature) avg_out = self.conv2(self.conv1(avg)) max_out = self.conv2(self.conv1(max)) out = avg_out + max_out out = tf.nn.sigmoid(out) return out
时间: 2024-04-27 16:23:34 浏览: 96
这段代码实现了通道注意力机制。首先在 `__init__` 函数中定义了一个全局平均池化和一个全局最大池化,然后通过两个卷积层和一个 sigmoid 函数将平均池化和最大池化的结果融合起来,最后输出一个通道注意力权重矩阵。在 `call` 函数中,先将输入通过全局平均池化和全局最大池化得到两个结果,然后分别经过卷积层并相加,最后通过 sigmoid 函数得到通道注意力权重矩阵,返回结果。这段代码本身看起来没有语法错误,但需要在调用这个类时传入正确的参数才能保证功能正确。
相关问题
用tensorflow的layers.Layer模块改写 class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio = 4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out)
以下是使用tensorflow的layers.Layer模块改写的代码:
```
import tensorflow as tf
class ChannelAttention(tf.keras.layers.Layer):
def __init__(self, in_planes, ratio=4):
super(ChannelAttention, self).__init__()
self.avg_pool = tf.keras.layers.GlobalAveragePooling2D()
self.max_pool = tf.keras.layers.GlobalMaxPooling2D()
self.fc1 = tf.keras.layers.Conv2D(filters=in_planes // ratio, kernel_size=1, strides=1, padding='same')
self.relu1 = tf.keras.layers.ReLU()
self.fc2 = tf.keras.layers.Conv2D(filters=in_planes, kernel_size=1, strides=1, padding='same')
self.sigmoid = tf.keras.layers.Activation('sigmoid')
def call(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = tf.add(avg_out, max_out)
return self.sigmoid(out)
```
同样需要注意的是,tensorflow中没有nn.Module这个概念,而是使用tf.keras.layers.Layer作为基类。在类定义中加入`tf.keras.layers.Layer`,并对一些函数名称进行修改。另外,由于在`ChannelAttention`类中使用了`GlobalAveragePooling2D`和`GlobalMaxPooling2D`函数,因此需要保证tensorflow的版本在2.0以上。在`ChannelAttention`的`__init__`函数中,使用了`GlobalAveragePooling2D`和`GlobalMaxPooling2D`函数分别对输入数据进行global average pooling和global max pooling操作,然后使用`Conv2D`函数构建全连接层,并使用ReLU激活函数进行非线性变换,最后再构建一个全连接层,并使用sigmoid函数进行归一化。在`ChannelAttention`的`call`函数中,使用了`add`函数对两个分支的输出进行相加。
class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio = 4): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) 改为tensorflow形式
在 TensorFlow 中,可以使用以下代码来实现相同的通道注意力模块:
```python
import tensorflow as tf
class ChannelAttention(tf.keras.layers.Layer):
def __init__(self, in_planes, ratio=4):
super(ChannelAttention, self).__init__()
self.avg_pool = tf.keras.layers.GlobalAvgPool2D()
self.max_pool = tf.keras.layers.GlobalMaxPool2D()
self.fc1 = tf.keras.layers.Conv2D(in_planes // ratio, kernel_size=1, strides=1, use_bias=False)
self.relu1 = tf.keras.layers.ReLU()
self.fc2 = tf.keras.layers.Conv2D(in_planes, kernel_size=1, strides=1, use_bias=False)
self.sigmoid = tf.keras.layers.Activation('sigmoid')
def call(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
```
在 TensorFlow 中,我们使用 `tf.keras.layers` 模块来定义网络层,使用 `call()` 方法来实现前向传播。这里的 `GlobalAvgPool2D` 和 `GlobalMaxPool2D` 分别代替了 PyTorch 中的 `AdaptiveAvgPool2d` 和 `AdaptiveMaxPool2d`,它们也可以用来对不同尺寸的输入进行平均池化和最大池化。另外,TensorFlow 中没有 `nn.ReLU` 模块,我们需要使用 `tf.keras.layers.ReLU()` 来替代。其他的代码实现和 PyTorch 版本相同。
阅读全文