python代码:假设有一个图片文件夹(不是人脸图片),从中选择4张相似度相近的图进行mosaic,mosaic完了之后保存起来并删除掉当前的4张图,重复以上操作,直到不足4张图为止
时间: 2024-10-23 22:20:25 浏览: 18
image mosaic.zip_mosaic_双线性插值_图像拼接_图片拼接
在Python中,你可以使用`os`, `PIL` (Python Imaging Library) 和 `numpy` 来实现这个功能。首先,你需要安装这些库,如果尚未安装可以使用`pip install os Pillow numpy`命令。以下是一个简单的示例,展示了如何遍历文件夹,找到相似图片,并创建mosaic的过程。请注意,这里没有直接的相似度计算模块,我们假设你已经有一个方法`calculate_similarity()`来进行相似度计算:
```python
import os
from PIL import Image
import numpy as np
def load_image(path):
with Image.open(path) as img:
return np.array(img)
def mosaic_images(images, size=(800, 600)):
combined = np.zeros(size)
for img in images:
combined[combined.shape[0] // 2 - img.shape[0] // 2 : combined.shape[0] // 2 + img.shape[0] // 2,
combined.shape[1] // 2 - img.shape[1] // 2 : combined.shape[1] // 2 + img.shape[1] // 2] = img
return combined
def select_and_mosaic(directory, output_dir, threshold=0.8, min_count=4):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
selected_images = []
while len(selected_images) < min_count and len(os.listdir(directory)) > 0:
files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
if len(files) == 0:
break
# 假设calculate_similarity()函数在此处实现,返回的是一个0到1的相似度分数列表
similarity_scores = [calculate_similarity(load_image(os.path.join(directory, file))) for file in files]
# 根据相似度选择图片
next_img = files[np.argmax(similarity_scores)]
selected_images.append(next_img)
os.remove(os.path.join(directory, next_img)) # 删除已选择的图片
# 创建mosaic并保存
mosaic = mosaic_images([load_image(os.path.join(directory, img)) for img in selected_images])
mosaic_path = os.path.join(output_dir, "mosaic_{}.png".format(len(selected_images)))
Image.fromarray(mosaic).save(mosaic_path)
# 使用方法
select_and_mosaic('input_folder', 'output_folder')
```
阅读全文