多头自注意力机制和多头注意力机制
时间: 2023-12-16 19:27:31 浏览: 144
多头注意力机制和多头自注意力机制都是Transformer模型中的重要组成部分,用于提取输入序列中的关键信息。其中,多头注意力机制用于处理输入序列和输出序列之间的关系,而多头自注意力机制则用于处理输入序列内部的关系。
多头注意力机制将输入序列分别作为Query、Key和Value进行线性变换,然后通过放缩点积注意力机制计算得到每个位置对其他位置的注意力权重,最后将Value按照这些权重进行加权求和得到输出序列。多头注意力机制之所以称为“多头”,是因为它将输入序列分为多个子空间,每个子空间都有自己的Query、Key和Value,最终将这些子空间的输出拼接起来得到最终的输出序列。这样做的好处是可以让模型在不同的表示子空间里学习到相关的信息。
多头自注意力机制与多头注意力机制类似,不同之处在于它只处理输入序列内部的关系。具体来说,它将输入序列作为Query、Key和Value进行线性变换,然后通过放缩点积注意力机制计算得到每个位置对其他位置的注意力权重,最后将Value按照这些权重进行加权求和得到输出序列。与多头注意力机制类似,多头自注意力机制也将输入序列分为多个子空间,每个子空间都有自己的Query、Key和Value,最终将这些子空间的输出拼接起来得到最终的输出序列。这样做的好处是可以让模型在不同的表示子空间里学习到输入序列内部的相关信息。
下面是一个多头自注意力机制的例子:
```python
import torch
import torch.nn as nn
class MultiHeadSelfAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadSelfAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
self.head_size = d_model // num_heads
self.query = nn.Linear(d_model, d_model)
self.key = nn.Linear(d_model, d_model)
self.value = nn.Linear(d_model, d_model)
self.fc = nn.Linear(d_model, d_model)
def forward(self, x):
batch_size, seq_len, d_model = x.size()
# 将输入序列进行线性变换得到Query、Key和Value
Q = self.query(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2)
K = self.key(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2)
V = self.value(x).view(batch_size, seq_len, self.num_heads, self.head_size).transpose(1, 2)
# 计算注意力权重
scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32))
attn_weights = torch.softmax(scores, dim=-1)
# 加权求和得到输出序列
attn_output = torch.matmul(attn_weights, V)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.d_model)
output = self.fc(attn_output)
return output
```
阅读全文