/<(.*)s(.*)c(.*)r(.*)i(.*)p(.*)t/i
时间: 2024-06-28 21:01:08 浏览: 100
看起来你可能是在询问如何在Python中使用正则表达式匹配字符串。Python的`re`模块提供了正则表达式操作的功能。下面是一个简单的例子:
```python
import re
# 假设我们有一个字符串
text = "This is a sample script for regex practice."
# 使用正则表达式查找包含"script"的子串
pattern = r"script"
matches = re.search(pattern, text)
if matches:
print(f"Pattern found at position {matches.start()} to {matches.end() - 1}: {matches.group()}")
else:
print("Pattern not found.")
```
在这个例子中,`re.search()`函数会在整个字符串`text`中查找第一次出现`"script"`的地方。如果找到,它会返回一个匹配对象,包含匹配的起始和结束位置;如果没有找到,则返回`None`。
相关问题
import numpy as np import matplotlib.pyplot as plt import sympy from scipy.interpolate import interp1d gamma = 1.2 R = 8.314 T0 = 500 Q = 50 * R * T0 a0 = np.sqrt(gamma * R * T0) M0 = 6.216 P_P0 = sympy.symbols('P_P0') num = 81 x0 = np.linspace(0,1,num) t_t0 = np.linspace(0,15,num) x = x0[1:] T_T0 = t_t0[1:] h0 = [] h1 = []#创建拉姆达为1的空数组 r = [] t = [] c = [] s = [] i = 0 for V_V0 in x: n1 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 0 * Q / a0 ** 2,P_P0)#lamuda=0的Hugoniot曲线方程 n2 = sympy.solve(1 / (gamma-1) * (P_P0 * V_V0 - 1) - 0.5 * (P_P0 + 1) * (1 - V_V0)- gamma * 1 * Q / a0 ** 2,P_P0)#lamuda=1的Hugoniot曲线方程 n3 = sympy.solve(-1 * P_P0 + 1 - gamma * M0 ** 2 * (V_V0 - 1),P_P0)#Reyleigh曲线方程 n4 = 12.014556 / V_V0#等温线 n5 = sympy.solve((P_P0 - 1 / (gamma+1) )* (V_V0-gamma / (gamma + 1)) - gamma / ((gamma + 1) ** 2),P_P0)#声速线 n6 = 10.6677 / np.power(V_V0,1.2)#等熵线 h0.append(n1) h1.append(n2) r.append(n3) t.append(n4) c.append(n5) s.append(n6) i = i+1 h0 = np.array(h0) h1 = np.array(h1) r = np.array(r) t = np.array(t) c = np.array(c) s = np.array(s) plt.plot(x,r,label='Rayleigh') plt.plot(x,t,color='purple',label='isothermal') plt.plot(x,s,color='skyblue',label='isentropic') a = np.where(h0 < 0) b = np.where(c < 0) h0 = np.delete(h0,np.where(h0 < 0)[0],axis = 0)#去除解小于0的值 h1 = np.delete(h1,np.where(h1 < 0)[0],axis = 0)#去除解小于0的值 c = np.delete(c,np.where(c < 0)[0],axis = 0)#去除解小于0的值 x0 = np.delete(x,a,axis = 0)#对应去除x轴上错误值的坐标 x1 = np.delete(x,b,axis = 0) plt.plot(x0,h0,label='Hugoniot(lambda=0)') plt.plot(x0,h1,label='Hugoniot(lambda=1)') plt.plot(x1,c,color='yellow',label='soniclocus') plt.ylim((0,50)) plt.legend() # 显示图例 plt.xlabel('V/V0') plt.ylabel('P/P0') f1 = interp1d(x1, c.T, kind='cubic') f2 = interp1d(x,r.T,kind='cubic') f3 = interp1d(x, t.T, kind='cubic') epsilon = 0.0001 x0 = 0.56 y0 = f1(x0) - f2(x0) while abs(y0) > epsilon: df = (f1(x0 + epsilon) - f2(x0 + epsilon) - y0) / epsilon x0 -= y0 / df y0 = f1(x0) - f2(x0) plt.scatter(x0, y0, 50, color ='red') plt.show()
这是一个 Python 代码,我可以解读出来。这段代码主要是用来绘制气体动力学中的一些图形,包括 Hugoniot 曲线、Rayleigh 曲线、等温线、等熵线和声速线等等。其中用到了一些科学计算库,比如 numpy、matplotlib、sympy 和 scipy.interpolate。这段代码还包括了一些数据处理的操作,比如删除数组中小于0的值、插值等等。最后,这段代码还用牛顿迭代法求解了两条曲线的交点。
18.(1.0分)#include <stdio.h> int *f(int *s, int *t) ( int k; if(*s 熙康LIK=*s;*s=*t;*t=k; C return s; ] main()( int i=3,j=5, *p=&i, *q=&j, *r; r=f(p.q); printf("%d,%d,%d,%d,%d\n",ij, *p,*q,*r) SO 则程序的输出结果是
程序中存在语法错误,修正后的代码如下:
```
#include <stdio.h>
int *f(int *s, int *t) {
int k;
if (*s < *t) {
k = *s;
*s = *t;
*t = k;
}
return s;
}
int main() {
int i = 3, j = 5, *p = &i, *q = &j, *r;
r = f(p, q);
printf("%d,%d,%d,%d,%d\n", i, j, *p, *q, *r);
return 0;
}
```
输出结果为:`5,3,5,3,5`。
阅读全文