无人机深度强化学习代码
时间: 2023-10-08 08:08:36 浏览: 188
无人机深度强化学习的代码可以在以下GitHub项目中找到:
1. tobiasfshr/deep-reinforcement-learning-drone-control: 一个基于Tensorflow和ROS的无人机控制系统,使用深度强化学习的方法。你可以在这个项目中找到相关的代码和实现细节。
2. yilunc2020/Attention-DQN: 这是一个使用深度递归注意力强化学习的方法在Atari游戏中进行训练的项目。你可以在这个项目中找到相关的代码和实现细节。
3. ZYunfeii/UAV_Obstacle_Avoiding_DRL: 这是一个关于无人机的深度强化学习自主避障算法的项目。你可以在这个项目中找到相关的代码和实现细节。
相关问题
写一个无人机深度强化学习控制的matlab代码
编写一个无人机深度强化学习控制的MATLAB代码是一个复杂的任务,涉及到机器学习、控制系统设计以及环境模拟。由于MATLAB是一种强大的数值计算工具,通常用于创建原型和算法演示,下面是一个简化的示例框架,展示了如何开始构建这样一个项目:
```matlab
% 导入必要的库和工具箱
addpath('DeepRLToolbox'); % 假设你有一个包含DQN或DDPG等强化学习库的自定义工具箱
% 定义环境模型 (如Pendulum环境)
env = DroneEnvironment(); % 自定义无人机飞行环境类
% 初始化深度Q网络 (DQN)
net = DQN(env); % 使用DeepQLearner函数创建一个DQN网络
% 设置训练参数
num_episodes = 500;
max_steps_per_episode = 100;
replay_memory_size = 10000;
learning_rate = 0.001;
% 强化学习训练循环
for episode = 1:num_episodes
% 获取初始状态
state = env.reset();
for step = 1:max_steps_per_episode
% 探索或利用 (epsilon-greedy策略)
if rand < epsilon
action = env.action_space.sample();
else
action = net.predict(state);
end
% 执行动作并获取反馈
next_state, reward, done, info = env.step(action);
% 存储经验到记忆中
replay_memory.push({state, action, reward, next_state, done});
% 每步更新网络
if mod(step, update_frequency) == 0
net.train(replay_memory);
end
% 更新状态
state = next_state;
% 如果达到终止条件,结束回合
if done
break;
end
end
% 结束每个episode后的学习步骤
net.updateTargetNetwork();
end
% 测试网络性能
test_states = ...; % 生成测试集
test_actions = net.predict(test_states);
% 显示结果和性能指标
plotTrainingResults(num_episodes, net.q_values_mean);
%
深度强化学习的多无人机路径规划python代码
### 使用Python实现基于深度强化学习的多无人机路径规划
对于利用深度强化学习来完成多无人机系统的路径规划任务,可以采用TensorFlow作为主要开发环境[^1]。下面提供一段简化版的概念验证代码片段用于展示如何设置一个多代理深度强化学习模型来进行基本的路径规划模拟。
```python
import numpy as np
import tensorflow as tf
from collections import deque
import random
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # 折扣率
self.epsilon = 1.0 # 探索率初始值
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(24, input_dim=self.state_size, activation='relu'))
model.add(tf.keras.layers.Dense(24, activation='relu'))
model.add(tf.keras.layers.Dense(self.action_size, activation='linear'))
model.compile(loss="mse", optimizer=tf.keras.optimizers.Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def multi_drone_path_planning():
num_drones = 3 # 假设有三架无人机参与协同工作
env = Environment(num_agents=num_drones) # 初始化环境对象,这里假设有一个Environment类定义好了交互逻辑
agents = []
for i in range(num_drones):
agent = DQNAgent(env.observation_space.shape[0], env.action_space.n)
agents.append(agent)
episodes = 1000
time_steps_per_episode = 200
for e in range(episodes):
states = env.reset()
for t in range(time_steps_per_episode):
actions = []
for idx, agent in enumerate(agents):
action = agent.act(states[idx])
actions.append(action)
next_states, rewards, dones, info = env.step(actions)
for idx, agent in enumerate(agents):
agent.remember(states[idx], actions[idx], rewards[idx], next_states[idx], dones[idx])
states = next_states
if all(dones):
break
for agent in agents:
agent.replay(minibatch_size=32)
if __name__ == "__main__":
multi_drone_path_planning()
```
这段代码展示了创建多个DQN智能体并让它们在一个共享环境中共同工作的过程。每个智能体负责控制一架无人机,并通过与其他智能体互动以及探索周围空间来自适应调整自己的行为策略以达到最优解。此案例中的`Environment`类应该被具体化为适合特定应用场景下的仿真器或真实世界的接口[^2]。
阅读全文
相关推荐
















