用代码生成无人机强化学习在airsim避障
时间: 2023-09-03 15:15:03 浏览: 405
首先,需要安装 AirSim 模拟器和 Python API。可以参考官方文档进行安装。
接下来,需要定义无人机的状态和动作。在本例中,我们将无人机状态定义为无人机的位置和速度。动作定义为无人机的油门、俯仰角和偏航角。
```
class DroneState:
def __init__(self, pos, vel):
self.pos = pos
self.vel = vel
class DroneAction:
def __init__(self, throttle, pitch, yaw):
self.throttle = throttle
self.pitch = pitch
self.yaw = yaw
```
然后,需要定义一个强化学习代理。在本例中,我们使用深度 Q 学习算法(DQN)作为代理。DQN 是一种深度强化学习算法,它使用深度神经网络来估计 Q 值函数,并通过贪心策略选择动作。
```
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95
self.epsilon = 1.0
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.uniform(-1, 1, size=(self.action_size,))
act_values = self.model.predict(state)
return act_values[0]
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma * np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
```
在训练过程中,我们需要定义奖励函数。在本例中,我们将奖励定义为无人机与障碍物的距离的负值,以鼓励无人机尽可能远离障碍物。
```
def get_reward(prev_state, next_state):
dist_to_obstacle = np.linalg.norm(next_state.pos - obstacle_pos)
reward = -(dist_to_obstacle / 10)
return reward
```
最后,我们可以使用以下代码来训练代理并测试它的性能。
```
# 初始化无人机和障碍物的位置
drone_pos = np.array([0, 0, -10])
drone_vel = np.array([0, 0, 0])
drone_state = DroneState(drone_pos, drone_vel)
obstacle_pos = np.array([10, 10, -10])
# 初始化代理
state_size = 6
action_size = 3
agent = DQNAgent(state_size, action_size)
# 训练代理
batch_size = 32
num_episodes = 1000
for i in range(num_episodes):
state = np.concatenate((drone_state.pos, drone_state.vel))
for t in range(100):
# 获取动作
action = agent.act(state)
drone_action = DroneAction(*action)
# 更新无人机状态
drone_pos, drone_vel = update_drone_state(drone_state, drone_action)
drone_state = DroneState(drone_pos, drone_vel)
# 获取奖励并更新经验回放
next_state = np.concatenate((drone_state.pos, drone_state.vel))
reward = get_reward(state, next_state)
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
break
# 更新 Q 值函数
if len(agent.memory) > batch_size:
agent.replay(batch_size)
# 保存模型
if i % 50 == 0:
agent.save('dqn_model.h5')
# 测试代理
drone_state = DroneState(drone_pos, drone_vel)
for t in range(100):
state = np.concatenate((drone_state.pos, drone_state.vel))
action = agent.act(state)
drone_action = DroneAction(*action)
drone_pos, drone_vel = update_drone_state(drone_state, drone_action)
drone_state = DroneState(drone_pos, drone_vel)
if done:
break
```
在这个例子中,我们使用了 DQN 算法来训练代理。你也可以尝试其他强化学习算法,例如 actor-critic 算法或者 policy gradient 算法。此外,你还可以尝试使用更高级的深度神经网络架构来提高代理的性能。
阅读全文