GMMMatlab代码
时间: 2023-08-31 08:11:46 浏览: 86
以下是一个用MATLAB实现的GMM算法的代码示例:
```matlab
function \[a_fin, mu_fin, sigma_fin\] = GMM(X1, a_init, mu_init, sigma_init)
K = size(a_init, 2);
\[M, N\] = size(X1);
a = a_init;
mu = mu_init;
sigma = sigma_init;
px = zeros(M, K);
thre = 1e-5;
LLD_pro = inf;
while true
for i = 1:K
px(:, i) = mvnpdf(X1, mu(i, :), sigma);
end
pGramm = repmat(a, M, 1) .* px;
pGramm = pGramm ./ repmat(sum(pGramm, 2), 1, K);
Nk = sum(pGramm, 1);
mu = diag(1./Nk) * pGramm' * X1;
for kk = 1:K
Xshift = X1 - repmat(mu(kk, :), M, 1);
sigma(:, :, kk) = (Xshift' * diag(pGramm(:, kk)) * Xshift) / Nk(:, kk);
end
a = Nk / M;
LLD = sum(log(a * px'));
if (LLD - LLD_pro) < thre
break;
end
LLD_pro = LLD;
end
a_fin = a;
mu_fin = mu;
sigma_fin = sigma;
end
```
这段代码实现了GMM算法,其中`X1`是输入数据,`a_init`、`mu_init`和`sigma_init`是GMM模型的初始参数。算法通过迭代优化参数,直到收敛为止。最终返回优化后的参数`a_fin`、`mu_fin`和`sigma_fin`。请注意,这只是一个简单的示例代码,实际应用中可能需要根据具体情况进行修改和优化。
#### 引用[.reference_title]
- *1* [高斯混合模型(GMM)](https://blog.csdn.net/radar_zzm/article/details/89012835)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [GMM聚类及Matlab代码实现](https://blog.csdn.net/yinyu19950811/article/details/78236638)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文