利用meg16的ad转换功能,采集可调电阻上的可调电压,并在4位数码管上显示实际电

时间: 2023-07-13 12:02:03 浏览: 73
### 回答1: 要利用MEG16的AD转换功能来采集可调电阻上的可调电压,并在4位数码管上显示实际电压,我们可以按照以下步骤进行: 1. 连接电阻:首先,将可调电阻与MEG16微控制器的引脚连接起来,这样可以通过微控制器来控制电阻上的电压。通过调整可调电阻的大小,我们可以改变电压的值。 2. 设置AD转换功能:在编程中,我们需要设置MEG16的AD转换模块来进行电压采集。通过配置AD转换的参考电压、分辨率等参数,我们可以确保采集到准确的电压值。 3. 进行AD转换:通过编写代码,在需要的时候启动AD转换模块来采集电压值。MEG16会将电压转换为相应的数字值。 4. 数码管显示:接下来,我们可以将采集到的数字值通过数码管进行显示。通过设置相应的引脚和显示方式,我们可以将数字值转换为在数码管上显示的实际电压。 通过以上步骤,我们就可以利用MEG16的AD转换功能来采集可调电阻上的可调电压,并在4位数码管上显示实际电压。这样,我们可以通过调节可调电阻来改变电压值,并实时观察到在数码管上的变化。这种方法可以有效地实现对电压的监测和控制。 ### 回答2: 利用MEG16的AD转换功能,可以采集可调电阻上的可调电压,并在4位数码管上显示实际电压。 首先,在可调电阻上加上一个固定电压作为参考电压,利用AD转换模块将可调电阻上的电压和参考电压进行比较和转换。 然后,将转换后的数字信号通过数码管驱动模块进行处理和显示。数码管驱动模块将数字信号进行解码并将相应的数字显示在4位数码管上。 在程序设计方面,首先需要配置AD转换模块的参数,例如参考电压、分辨率等。然后在主程序中,通过AD转换模块进行采样和转换,并将转换后的数字信号传递给数码管驱动模块进行显示。 为了方便用户调节可调电阻上的电压,可以使用外部控制按钮或旋钮,通过读取按钮或旋钮的状态来调整可调电阻上的电压值。然后通过AD转换和数码管显示,即可实时显示可调电阻上的实际电压。 总之,利用MEG16的AD转换功能和数码管驱动模块,可以实现采集可调电阻上的可调电压,并在4位数码管上显示实际电压。通过合理的电路设计和程序编写,可以实现精确和方便的电压采集和显示功能。 ### 回答3: 可以通过使用MEG16的AD转换功能来采集可调电阻上的可调电压,并将实际电压值显示在4位数码管上。 首先,需要将可调电阻接入到AD输入引脚上,以实现对电压值的采集。然后,设置MEG16的AD转换模块,使其能够读取AD输入引脚上的电压值。 接下来,通过编程控制MEG16的AD转换模块,将采集到的电压值进行转换和处理,得到实际的电压值。这一步可以根据可调电阻的特性和采集的电压值进行换算,得到电压值在数码管上的显示数值。 最后,将实际的电压值通过数码管驱动模块,将其显示在4位数码管上。可以通过编程将转换后的电压值存储在适当的变量中,并将其传输到数码管驱动模块,以便在数码管上进行显示。 在显示的过程中,可以根据要求进行进位处理、小数点位置设置等。通过编程控制数码管的段驱动和位驱动,将实际电压值以数码管形式展示出来。 综上所述,通过利用MEG16的AD转换功能,可以采集可调电阻上的可调电压,并将实际电压值显示在4位数码管上。这样可以实现对电压值的准确测量和直观显示。

相关推荐

**测试电路** .option post RUNLVL=5 post_version=9601 **控制仿真精度以及仿真版本,不加这个没波形 .option probe post ** 设置波形输出 .option method=trap .option interp .option itl4=100 .option gshunt=1e-10 .option S_RATIONAL_FUNC=0 * DDR数据速率设置 .param bitrate = 10000Meg *数据速率 .param freq_clk = 'bitrate/2' *时钟频率,在DDR中,时钟速率是数据 .param UI_period = '1/bitrate' *每一位码元的时间 .param UI_sample = '100' *每一位码元的采样点,用来计算步长 .param tr=30ps tf=30ps td=0.2ns *上升沿,下降沿,延时 .param UI_num = '100' *总的仿真的码元 .param tran_step = 'UI_period/UI_sample' *仿真的步长 .param tran_stop = 'td+UI_num*UI_period' *总的仿真时间 vnd_en nd_en gnd dc 1.1 ** 电源使能 ********** 链路设置 ************ **输入的ibis模型定义 **只在DQ0端输入信号 bdq0_tx r_pu_dq0 r_pd_dq0 DQ0_Link_in ibis_dq0 nd_en r_OutOfIn_dq0 + file = 'h5cnag4nmjr_zfc.ibs' + model = 'RON34ODTOFF' + ramp_fwf=2 ramp_rwf=2 + typ = typ * endfold **S参数定义 **链路S参数 SLink DQ0_Link_in + DQ0_out ** 13-25为输出引脚 + mname = SLink_model .MODEL SLink_model S + TSTONEFILE = channel.s2p + FBASE=10MEGHZ FMAX=12GHZ **接收端ibis设置 * Rank0 bdq0_rx t_pu_dq0 t_pd_dq0 DQ0_out r_ndrot2rx0 +file = 'h5cnag4nmjr_zfc.ibs' +model = 'RONOFFODT120' +ramp_fwf=2 ramp_rwf=2 +typ = typ *********************仿真设置************************ *边沿输入 .PAT start_PAT=b0 r=1 rb=1 .PAT edge_PAT = b00010 r=0 rb=1 .PAT stop_PAT = b0 r=-1 rb=1 P_DQ0 ibis_dmc gnd port=1 dc=0 z0=50 + PAT(1 0 td tr tf UI_period start_PAT edge_PAT stop_PAT) .tran tran_step tran_stop *********************输出设置************************ .probe tran v(DQ0_out) .end网表解释

介绍一下这段代码的Depthwise卷积层def get_data4EEGNet(kernels, chans, samples): K.set_image_data_format('channels_last') data_path = '/Users/Administrator/Desktop/project 5-5-1/' raw_fname = data_path + 'concatenated.fif' event_fname = data_path + 'concatenated.fif' tmin, tmax = -0.5, 0.5 #event_id = dict(aud_l=769, aud_r=770, foot=771, tongue=772) raw = io.Raw(raw_fname, preload=True, verbose=False) raw.filter(2, None, method='iir') events, event_id = mne.events_from_annotations(raw, event_id={'769': 1, '770': 2,'770': 3, '771': 4}) #raw.info['bads'] = ['MEG 2443'] picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) labels = epochs.events[:, -1] print(len(labels)) print(len(epochs)) #epochs.plot(block=True) X = epochs.get_data() * 250 y = labels X_train = X[0:144,] Y_train = y[0:144] X_validate = X[144:216, ] Y_validate = y[144:216] X_test = X[216:, ] Y_test = y[216:] Y_train = np_utils.to_categorical(Y_train - 1) Y_validate = np_utils.to_categorical(Y_validate - 1) Y_test = np_utils.to_categorical(Y_test - 1) X_train = X_train.reshape(X_train.shape[0], chans, samples, kernels) X_validate = X_validate.reshape(X_validate.shape[0], chans, samples, kernels) X_test = X_test.reshape(X_test.shape[0], chans, samples, kernels) return X_train, X_validate, X_test, Y_train, Y_validate, Y_test kernels, chans, samples = 1, 3, 251 X_train, X_validate, X_test, Y_train, Y_validate, Y_test = get_data4EEGNet(kernels, chans, samples) model = EEGNet(nb_classes=3, Chans=chans, Samples=samples, dropoutRate=0.5, kernLength=32, F1=8, D=2, F2=16, dropoutType='Dropout') model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) checkpointer = ModelCheckpoint(filepath='/Users/XXX/baseline.h5', verbose=1, save_best_only=True) class_weights = {0: 1, 1: 1, 2: 1, 3: 1} fittedModel = model.fit(X_train, Y_train, batch_size=2, epochs=100, verbose=2, validation_data=(X_validate, Y_validate), callbacks=[checkpointer], class_weight=class_weights) probs = model.predict(X_test) preds = probs.argmax(axis=-1) acc = np.mean(preds == Y_test.argmax(axis=-1)) print("Classification accuracy: %f " % (acc))

import scipy.io import mne from mne.bem import make_watershed_bem # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] # Prepare surfaces for MNE surfs = [ mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain mne.bem.BEMSurface(outer_skull_vertices, outer_skull_triangles, sigma=0.016, id=3), # skull mne.bem.BEMSurface(scalp_vertices, scalp_triangles, sigma=0.33, id=5), # skin ] # Create BEM model model = mne.bem.BEM(surfs, conductivity=[0.3, 0.006, 0.3], is_sphere=False) model.plot(show=False) # Create BEM solution solution = mne.make_bem_solution(model) 运行代码时报错; Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 24, in <module> mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain AttributeError: module 'mne.bem' has no attribute 'BEMSurface'

最新推荐

recommend-type

手机高清摄像头OTP技术详解

 随着5Meg 、8Meg、12Meg 等高像素摄像头在手机中的应用越来越广,终端客户对camera的成像效果和品质要求越来越高,如何提升摄像头模组的一致性和各方面的性能已显得尤为重要。今天就为大家介绍在高像素模组中被...
recommend-type

Arduino MEGA 2560r3

有关Arduino 开发板的硬件描述,有关Arduino 开发板的硬件描述,有关Arduino 开发板的硬件描述
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步