使用RapidMiner的线性回归预测波士顿房价
时间: 2023-11-11 13:03:15 浏览: 249
应用预测模型-tinyxml指南[中文]
使用RapidMiner进行线性回归预测波士顿房价的步骤如下:
```RapidMiner
<process>
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="7.5.000" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="retrieve" compatibility="7.5.000" expanded="true" height="68" name="Retrieve Boston Housing" width="90" x="45" y="34">
<parameter key="repository_entry" value="//Samples/data/Boston Housing"/>
</operator>
<operator activated="true" class="set_role" compatibility="7.5.000" expanded="true" height="82" name="Set Role" width="90" x="179" y="34">
<parameter key="attribute_name" value="medv"/>
<parameter key="target_role" value="label"/>
<list key="set_additional_roles">
<parameter key="rm" value="ignore"/>
</list>
</operator>
<operator activated="true" class="multiply" compatibility="7.5.000" expanded="true" height="82" name="Multiply" width="90" x="313" y="34">
<parameter key="factor" value="1000"/>
<list key="apply_to_attributes">
<parameter key="medv" value="true"/>
</list>
</operator>
<operator activated="true" class="linear_regression" compatibility="7.5.000" expanded="true" height="82" name="Linear Regression" width="90" x="447" y="34"/>
<operator activated="true" class="apply_model" compatibility="7.5.000" expanded="true" height="82" name="Apply Model" width="90" x="581" y="34">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="7.5.000" expanded="true" height="82" name="Performance" width="90" x="715" y="34">
<parameter key="main_criterion" value="mean_squared_error"/>
<list key="other_criterion"/>
</operator>
<connect from_op="Retrieve Boston Housing" from_port="output" to_op="Set Role" to_port="example set input"/>
<connect from_op="Set Role" from_port="example set output" to_op="Multiply" to_port="example set input"/>
<connect from_op="Multiply" from_port="example set output" to_op="Linear Regression" to_port="training set"/>
<connect from_op="Linear Regression" from_port="model" to_op="Apply Model" to_port="model"/>
<connect from_op="Apply Model" from_port="output" to_op="Performance" to_port="example set input"/>
<connect from_op="Performance" from_port="performance" to_port="result 1"/>
<connect from_op="Performance" from_port="model" to_port="result 2"/>
</process>
</operator>
</process>
```
步骤解释:
1. 使用retrieve操作符导入波士顿房价数据集。
2. 使用set_role操作符将medv属性设置为标签。
3. 使用multiply操作符将medv属性的值乘以1000,以便更好地进行回归分析。
4. 使用linear_regression操作符进行线性回归分析。
5. 使用apply_model操作符将模型应用于数据集。
6. 使用performance操作符评估模型的性能。
阅读全文