将上面的代码改成 yolov8-seg.pt分割模型适用的
时间: 2023-08-01 08:15:44 浏览: 128
yolov8x-seg.pt模型文件
以下是将代码修改为适用于 YOLOv8-Seg 分割模型的示例代码:
```python
import io
import json
import base64
from PIL import Image
import torch
import torchvision.transforms as transforms
from models import YOLOv8Seg
def handler(context, event):
context.logger.info("Run yolov8-seg model")
data = event.body
buf = io.BytesIO(base64.b64decode(data["image"]))
threshold = float(data.get("threshold", 0.35))
# 加载模型
model = YOLOv8Seg("yolov8-seg.pt")
model.eval()
# 图像预处理
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(Image.open(buf)).unsqueeze(0)
# 模型推理
with torch.no_grad():
output = model(image)
# 处理分割结果
results = []
for class_id in range(1, output.shape[1]):
mask = (output[0, class_id] > threshold).float()
contours, _ = cv2.findContours(mask.numpy().astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
results.append({
"label": str(class_id),
"points": [int(x), int(y), int(x + w), int(y + h)],
"type": "rectangle"
})
return context.Response(body=json.dumps(results), headers={},
content_type='application/json', status_code=200)
```
在这个示例中,我们假设您有一个名为 `YOLOv8Seg` 的自定义模型类,可以从 `yolov8-seg.pt` 加载 YOLOv8-Seg 模型。代码中包括模型加载、图像预处理、模型推理和结果处理的步骤。请根据您的实际情况调整代码。
阅读全文