substrate的热传导率

时间: 2024-03-25 08:34:39 浏览: 21
substrate的热传导率是指在单位时间内,单位面积上的热量传导的能力。它是描述物质导热性能的一个重要参数。substrate的热传导率取决于其材料的性质和结构。 substrate的热传导率可以通过实验测量得到,也可以通过理论计算进行估算。常见的测量方法包括热导率计、热扩散法等。而理论计算方法则可以利用材料的物理性质和结构参数进行模拟和推算。 需要注意的是,不同材料的热传导率存在较大差异。例如,金属材料通常具有较高的热传导率,而绝缘材料则通常具有较低的热传导率。
相关问题

Substrate框架学习

Substrate框架是一款用于iOS和Android平台的HOOK框架,它允许安装在移动设备上的应用程序动态地修改运行时行为。Substrate框架提供了一个简单的API,使开发者可以在应用程序运行时修改已加载的代码、拦截和修改函数调用、甚至可以修改应用程序的系统库。 Substrate框架特点: 1. 动态修改代码:Substrate框架可以在应用程序运行时动态地修改代码,因此无需重新编译和签名应用程序。 2. 轻量级:Substrate框架的核心库非常小巧,只有几百KB,因此对应用程序的性能影响很小。 3. 极其灵活:Substrate框架支持自定义的HOOK方式,允许开发者使用自己熟悉的编程语言和工具来编写HOOK插件。 4. 兼容性强:Substrate框架可以与大多数iOS和Android操作系统版本兼容,因此可以在不同版本的设备上使用。 Substrate框架的使用: 1. 首先需要在iOS或Android设备上安装Cydia或Magisk等ROOT工具。 2. 下载并安装Substrate框架。 3. 编写HOOK插件,使用Substrate框架提供的API进行HOOK。 4. 将编写好的HOOK插件打包成deb或zip格式的文件,通过Cydia或Magisk等ROOT工具进行安装。 需要注意的是,Substrate框架使用时需要ROOT权限,而且HOOK技术可能会影响应用程序的稳定性和安全性,因此请谨慎使用。

ue5 substrate

UE5 Substrate 是什么? UE5 Substrate 是 Unreal Engine 5 中的一个新功能,它是一个用于创建高度可定制的材质的框架。Substrate 允许开发人员使用节点图编辑器创建复杂的材质,以实现更高级的视觉效果。通过 Substrate,开发人员可以更加直观地控制材质的属性和效果,从而实现更加逼真的渲染。

相关推荐

解释以下代码:def __init__(self, substrate="InP", materials=["InGaAs", "AlInAs"], moleFracs=[0.53, 0.52], xres=0.5, Eres=0.5, statePerRepeat=20, layerWidths=[10.0], layerMtrls=None, layerDopings=None, customIFR=False, mtrlIFRLambda=None, mtrlIFRDelta=None, ifrDelta=None, ifrLambda=None, layerARs=None, EField=0, repeats=3, T=300.0, solver="ODE", description="", wl=3.0): assert(isinstance(layerWidths, list)) assert(isinstance(materials, list)) assert(isinstance(moleFracs, list)) N = len(layerWidths) M = len(materials) assert(M >= 1) assert(len(moleFracs) == M) self.substrate = substrate self.materials = materials self.moleFracs = moleFracs self.layerMtrls = [0]*N if layerMtrls is None else layerMtrls self.layerDopings = [0.0]*N if layerDopings is None else layerDopings self.temperature = T self.customIFR = customIFR if not customIFR: if isinstance(mtrlIFRDelta, list): assert(len(mtrlIFRDelta) == M) assert(isinstance(mtrlIFRLambda, list)) assert(len(mtrlIFRLambda) == M) self.mtrlIFRDelta = mtrlIFRDelta self.mtrlIFRLambda = mtrlIFRLambda else: self.mtrlIFRDelta = [mtrlIFRDelta or 0.0] * M self.mtrlIFRLambda = [mtrlIFRLambda or 0.0] * M ifrDelta, ifrLambda = self._get_IFRList() self.description = description super().__init__(xres=xres, Eres=Eres, statePerRepeat=statePerRepeat, layerWidths=layerWidths, layerARs=layerARs, ifrDelta=ifrDelta, ifrLambda=ifrLambda, EField=EField, repeats=repeats) self.crystalType = Material.MParam[substrate]["Crystal"] self.subM = Material.Material(self.substrate, self.temperature) self.wl = wl self.solver = solver if onedq is None: self.solver = 'matrix' self.update_mtrls()

翻译This SiO2 shell is a key component in the mechanism for reversible actuation, as illustrated by finite element analysis (FEA) in Fig. 1C. An increase in temperature transforms the SMA (nitinol) from the martensitic to the austenitic phase, causing the 3D structure to flatten into a 2D shape. The responses of the SMA elements at the joints act as driving forces to deform the PI skeleton. This process also elastically deforms the SiO2 shell, resulting in a counter force that limits the magnitude of the deformation. The change in shape ceases when the forces from the shell balance those from the joints (right frame in Fig. 1C). Upon a reduction in temperature, the SMA changes from the austenitic back to the martensitic phase, thereby reducing the force produced by the SMA at the joints to zero. The elastic forces associated with the shell then push the entire system back to the original 3D geometry (left frame in Fig. 1C). Figure S3A simulates the moments generated by the SMA and the SiO2 shell. In the FEA model, the SiO2 shell appears on both the outer and inner surfaces of the 3D robot, consistent with experiments (fig. S3B). Although a single layer of the SiO2 shell at the outer or inner surface can also provide restoring force, the double-layer shell structure follows naturally from the conformal deposition process. This actuation scheme allows for reversible shape transformations using a one-way shape memory material. Without the shell, the structure only supports a single change in shape, from 3D to 2D, as illustrated in fig. S3C. Figure 1D shows optical images of a freestanding 3D peekytoe crab on the edge of a coin, highlighting the preserved 3D geometry enabled by the SiO2 shell after release from the elastomer substrate. Other 3D structures in geometries that resemble baskets, circular helices, and double-floor helices also exhibit high shape storage ratios (>85%) after cycles of heating and cooling (fig. S4). This ratio (s) is defined as s = 1 − |L1 − L0|/L0 × 100%, where L0 and L1 are the distances between the bonding sites at both ends at the initial stage and subsequent stages, respectively

最新推荐

recommend-type

信号完整性学习--S参数基础知识

在驱动器、接收器的封装内部会有bonding wire/bump、substrate布线、BGA ball,在PCB板上又会有换层过孔、微带或者带状布线、匹配器件、连接器等等。传输通道的这些组成部分都会导致阻抗不连续、损耗等信号完整性...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

hive中 的Metastore

Hive中的Metastore是一个关键的组件,它用于存储和管理Hive中的元数据。这些元数据包括表名、列名、表的数据类型、分区信息、表的存储位置等信息。Hive的查询和分析都需要Metastore来管理和访问这些元数据。 Metastore可以使用不同的后端存储来存储元数据,例如MySQL、PostgreSQL、Oracle等关系型数据库,或者Hadoop分布式文件系统中的HDFS。Metastore还提供了API,使得开发人员可以通过编程方式访问元数据。 Metastore的另一个重要功能是跟踪表的版本和历史。当用户对表进行更改时,Metastore会记录这些更改,并且可以让用户回滚到
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

软件工程每个学期的生活及学习目标

软件工程每个学期的生活及学习目标可能包括以下内容: 1. 学习软件开发的基本理论和实践知识,掌握常用的编程语言和开发工具。 2. 熟悉软件开发的流程和方法,了解软件工程的标准和规范。 3. 掌握软件需求分析、设计、开发、测试、部署和维护的技能,能够独立完成简单的软件开发任务。 4. 培养团队合作的能力,学会与他人进行有效的沟通和协作,共同完成软件开发项目。 5. 提高自己的计算机技术水平,了解最新的软件开发技术和趋势,积极参与开源社区和技术交流活动。 6. 注重学习方法和习惯的培养,养成良好的学习和生活习惯,保持健康的身心状态。 7. 积极参加校内外的实践活动和比赛,拓展自己的视
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。