Linux进程间通信

时间: 2023-10-19 17:27:30 浏览: 44
Linux 进程间通信(IPC)是指在 Linux 操作系统中不同进程之间进行通信的方式。常见的 Linux IPC 方式有以下几种: - 管道(pipe):只能在具有父子关系的进程间使用,允许进程之间的单向通信。 - 命名管道(FIFO):可在任意进程间使用,允许进程之间的单向或双向通信。 - 信号量(semaphore):是一种进程间同步的机制,可用于进程间或线程间进行同步。 - 共享内存(shared memory):可以让多个进程共享同一块内存,并可以对其进行读写操作。 - 消息队列(message queue):是一种非阻塞的进程间通信方式,可以实现消息的非阻塞发送和接收。 -套接字(socket):支持网络通信,可用于不同主机间的进程间通信 其中管道,命名管道,共享内存,消息队列是Linux本地IPC,而套接字是用于网络通信的。
相关问题

LINUX 进程间通信

Linux进程间通信有多种方式,包括: 1.管道(Pipe):一种半双工的通信方式,只能用于具有亲缘关系的进程间通信。 2.命名管道(Named Pipe):也称FIFO,可用于无亲缘关系进程间通信。 3.消息队列(Message Queue):常用于进程间传递消息,可用于无亲缘关系进程间通信。 4.共享内存(Shared Memory):最快的一种IPC方式,需要依靠某种同步机制如信号量来同步进程间的访问。 5.信号量(Semaphores):一种计数器,用于多进程之间同步以及互斥操作的一种手段。 6.套接字(Socket):可用于不同主机之间的进程通信,是一种网络编程方式。 以上是常用的几种进程间通信方式,不同的方式适用于不同的场景。选择合适的方式可以提高进程间通信的效率和可靠性。

linux 进程间通信

Linux 进程间通信可以通过以下几种方式实现: 1. 管道(pipe),可以在同一系统中的进程间进行简单的数据传输。 2. 命名管道(named pipe),可以在不同系统之间或在同一系统的不同进程间进行数据传输。 3. 信号量(semaphore),可以用来实现进程间的同步和互斥。 4. 消息队列(message queue),可以用来在进程间进行消息传递。 5. 共享内存(shared memory),可以用来在进程间共享数据。 6.套接字(socket),可以在网络上的不同系统之间进行进程间通信。

相关推荐

在Linux中,进程间通信可以使用socket来实现。Socket是一种特殊的文件,它是应用层与TCP/IP协议族通信的中间软件抽象层,提供了一组简单的接口来组织数据,以符合指定的协议。在网络编程中,大部分的通信都是通过socket实现的。 使用TCP/IP协议的应用程序通常采用socket接口来实现网络进程之间的通信。无论是UNIX BSD的套接字还是UNIX System V的TLI(已经被淘汰),几乎所有的应用程序都是采用socket来进行通信。 此外,还有一种叫做Unix domain sockets的通信方式,它使用系统文件的地址作为进程间通信的身份,并且仅在系统内核内部进行通信,不会在网络中传播。两个进程可以同时打开一个Unix domain socket来进行通信。 总结来说,Linux中的进程间通信可以通过socket来实现,使用TCP/IP协议的应用程序通常采用socket接口进行通信,并且还可以使用Unix domain sockets进行通信。123 #### 引用[.reference_title] - *1* *2* [LINUX进程间网络通信--SOCKET](https://blog.csdn.net/qq_44370382/article/details/107959541)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [About AF_LOCAL in Linux](https://blog.csdn.net/frank_jb/article/details/77199834)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
以下是一个使用Linux进程间通信(IPC)机制的示例代码,包括使用管道(pipe)、共享内存(shared memory)和信号量(semaphore)进行进程间通信。 1. 使用管道(pipe)进行进程间通信: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #define BUFFER_SIZE 25 int main() { int fd[2]; pid_t pid; char write_msg[BUFFER_SIZE] = "Greetings"; char read_msg[BUFFER_SIZE]; if (pipe(fd) == -1) { fprintf(stderr, "Pipe failed"); return 1; } pid = fork(); if (pid < 0) { fprintf(stderr, "Fork failed"); return 1; } if (pid > 0) // Parent process { close(fd[0]); write(fd[1], write_msg, BUFFER_SIZE); close(fd[1]); } else // Child process { close(fd[1]); read(fd[0], read_msg, BUFFER_SIZE); printf("Received message: %s\n", read_msg); close(fd[0]); } return 0; } 2. 使用共享内存(shared memory)进行进程间通信: #include <stdio.h> #include <stdlib.h> #include <sys/ipc.h> #include <sys/shm.h> #define SHM_SIZE 1024 int main() { int shmid; key_t key = 1234; char *shm, *s; if ((shmid = shmget(key, SHM_SIZE, IPC_CREAT | 0666)) < 0) { perror("shmget"); exit(1); } if ((shm = shmat(shmid, NULL, 0)) == (char *) -1) { perror("shmat"); exit(1); } printf("Enter message: "); for (s = shm; (*s = getchar()) != '\n'; s++) ; *s = '\0'; printf("You entered: %s\n", shm); shmdt(shm); return 0; } 3. 使用信号量(semaphore)进行进程间通信: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/ipc.h> #include <sys/sem.h> #define MAX_RETRIES 10 union semun { int val; struct semid_ds *buf; unsigned short *array; }; int main() { key_t key = 1234; int semid, semval; union semun arg; struct sembuf sembuf; if ((semid = semget(key, 1, IPC_CREAT | 0666)) == -1) { perror("semget"); exit(1); } arg.val = 1; if (semctl(semid, 0, SETVAL, arg) == -1) { perror("semctl"); exit(1); } if ((semval = semctl(semid, 0, GETVAL, 0)) == -1) { perror("semctl"); exit(1); } printf("Semaphore value before decrement: %d\n", semval); sembuf.sem_num = 0; sembuf.sem_op = -1; sembuf.sem_flg =

最新推荐

详解Linux进程间通信——使用共享内存

共享内存是在两个正在运行的进程之间共享和传递数据的一种非常有效的方式。这篇文章主要介绍了详解Linux进程间通信——使用共享内存,有兴趣的可以了解一下。

深入理解Linux进程间通信

深刻理解Linux进程间通信(IPC) 1 Linux环境进程间通信(一) 3 Linux环境进程间通信(二): 信号(上) 19 Linux环境进程间通信(二): 信号(下) 30 Linux环境进程间通信(三) 40 Linux环境进程间通信(四) 52...

深刻理解Linux进程间通信(IPC)-详解.doc

一个大型的应用系统,往往需要众多...本系列文章阐述了Linux环境下的几种主要进程间通信手段,并针对每个通信手段关键技术环节给出详细实例。为达到阐明问题的目的,本文还对某些通信手段的内部实现机制进行了分析。

Linux进程间通信--Linux进程间通信

Linux进程间通信--Linux进程间通信--Linux进程间通信--Linux进程间通信

总结:linux进程间通信的几种机制的比较及适用场合

消息队列和过程调用往往单独使用,也就是说它们通常提供了自己的同步机制.相反,共享内存区通常需要由应用程序提供的某种同步形式才能正常工作.解决某个特定问题应使用哪种IPC不存在简单的判定,应该逐渐熟悉各种IPC...

定制linux内核(linux2.6.32)汇编.pdf

定制linux内核(linux2.6.32)汇编.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

图像处理进阶:基于角点的特征匹配

# 1. 图像处理简介 ## 1.1 图像处理概述 图像处理是指利用计算机对图像进行获取、存储、传输、显示和图像信息的自动化获取和处理技术。图像处理的主要任务包括图像采集、图像预处理、图像增强、图像复原、图像压缩、图像分割、目标识别与提取等。 ## 1.2 图像处理的应用领域 图像处理广泛应用于医学影像诊断、遥感图像处理、安检领域、工业自动化、计算机视觉、数字图书馆、人脸识别、动作捕捉等多个领域。 ## 1.3 图像处理的基本原理 图像处理的基本原理包括数字图像的表示方式、基本的图像处理操作(如灰度变换、空间滤波、频域滤波)、图像分割、特征提取和特征匹配等。图像处理涉及到信号与系统、数字

Cannot resolve class android.support.constraint.ConstraintLayout

如果您在Android Studio中遇到`Cannot resolve class android.support.constraint.ConstraintLayout`的错误,请尝试以下解决方案: 1. 确认您的项目中是否添加了ConstraintLayout库依赖。如果没有,请在您的build.gradle文件中添加以下依赖: ```groovy dependencies { implementation 'com.android.support.constraint:constraint-layout:<version>' } ``` 其中`<version>`为您想要

Solaris常用命令_多路径配置.doc

Solaris常用命令_多路径配置.doc