不定义next指针域,能使用->next么

时间: 2024-04-15 07:29:38 浏览: 20
如果不定义 `next` 指针域,是无法直接使用 `->next` 来访问下一个节点的。 `->` 运算符用于访问结构体指针中的成员。 在单链表中,每个节点之间的连接关系是通过 `next` 指针域来实现的。如果没有定义 `next` 指针域,就没有办法直接获取到下一个节点的地址,也就无法使用 `->next` 来访问下一个节点。 例如,假设我们有一个结构体 `Node` 表示单链表的节点: ```c typedef struct Node { int data; // 没有定义 next 指针域 } Node; ``` 如果没有定义 `next` 指针域,就无法使用 `->next` 来访问下一个节点。相应地,我们需要通过其他方式来遍历和操作单链表。可能需要使用额外的变量来保存下一个节点的地址,或者使用指针操作来实现相应的功能。这样做会使代码变得复杂且容易出错,所以在设计单链表时,建议定义一个 `next` 指针域来简化操作。
相关问题

#include <iostream> using namespace std; typedef int Elemtype1; typedef struct { Elemtype1 coef; int exp; }Elemtype; typedef struct LNode { Elemtype data; LNode *next; }*Poly; void Initlist(Poly &pa); void Input(Poly &pa); void Output(Poly &pa); void Add(Poly &pa,Poly &pb); int main() { Poly po1,po2; Initlist(po1); Initlist(po2); Input(po1); Input(po2); Output(po1); Output(po2); Add(po1,po2); Output(po1); } void Initlist(Poly &pa) { pa=new LNode; pa->next=pa; } void Input(Poly &pa) { LNode *r,*s; r=pa; Elemtype1 x; int z; cout<<"input coef,exp,exp==-1 will be end.\n"; while(1)//循环 { cin>>x>>z; if(z==-1) break;//如果z=-1 s=new LNode; s->data.coef=x; s->data.exp=z;//新节点s,data系数 为x,指数为z r->next=s;//r的后继为s r=s; } r->next=pa; } void Output(Poly &pa) { LNode *p=pa->next; bool start=true; while(p!=pa) { if(!start) { if(p->data.coef>0) cout<<"+"; } if(p->data.exp==0) cout<<p->data.coef; if(p->data.exp!=0&&!(p->data.coef==1||p->data.coef==-1)) cout<<p->data.coef; if(p->data.exp!=0&& p->data.coef==-1) cout<<"-"; if(p->data.exp!=0) { cout<<"X"; if(p->data.exp!=1) cout<<"^"<<p->data.exp; } start=false; p=p->next; } cout<<endl; } void Add(Poly &pa,Poly &pb) { LNode *p,*q,*r,*qd; p=pa->next; q=pb->next; r=pa; while(p!=pa&&q!=pb) { if(p->data.exp<q->data.exp) { r->next=p; r=p;p=p->next; } else if(p->data.exp>q->data.exp) { r->next=q; r=q;q=q->next; } else { p->data.coef=p->data.coef+q->data.coef; if(p->data.coef!=0) { r->next=p; r=p;p=p->next; } else { qd=p;p=p->next; delete qd; } qd=q; q=q->next; delete qd; } } if(p!=pa) r->next=p; else { while(q!=pb) { r->next=q; r=q;q=q->next; } r->next=pa; } qd=q; delete qd; }这段代码的每一行注释

这段代码的每一行注释如下: ```C++ #include <iostream> using namespace std; //定义多项式项的数据类型 typedef int Elemtype1; typedef struct { Elemtype1 coef; //系数 int exp; //指数 }Elemtype; //定义多项式的结构体 typedef struct LNode { Elemtype data; //数据域为多项式项 LNode *next; //指向下一个结点的指针 }*Poly; //初始化多项式 void Initlist(Poly &pa); //输入多项式 void Input(Poly &pa); //输出多项式 void Output(Poly &pa); //多项式相加 void Add(Poly &pa,Poly &pb); int main() { Poly po1,po2; //初始化两个多项式 Initlist(po1); Initlist(po2); //输入两个多项式 Input(po1); Input(po2); //输出两个多项式 Output(po1); Output(po2); //将两个多项式相加 Add(po1,po2); //输出相加后的多项式 Output(po1); } //初始化多项式 void Initlist(Poly &pa) { pa=new LNode; pa->next=pa; } //输入多项式 void Input(Poly &pa) { LNode *r,*s; r=pa; Elemtype1 x; int z; cout<<"input coef,exp,exp==-1 will be end.\n"; while(1) { //循环 cin>>x>>z; if(z==-1) break; //如果z=-1 s=new LNode; s->data.coef=x; //新节点s,data系数 为x s->data.exp=z; //新节点s,data指数 为z r->next=s; //r的后继为s r=s; //r指向新的尾结点 } r->next=pa; //循环链表 } //输出多项式 void Output(Poly &pa) { LNode *p=pa->next; bool start=true; while(p!=pa) { if(!start) { if(p->data.coef>0) cout<<"+"; } if(p->data.exp==0) cout<<p->data.coef; if(p->data.exp!=0&&!(p->data.coef==1||p->data.coef==-1)) cout<<p->data.coef; if(p->data.exp!=0&& p->data.coef==-1) cout<<"-"; if(p->data.exp!=0) { cout<<"X"; if(p->data.exp!=1) cout<<"^"<<p->data.exp; } start=false; p=p->next; } cout<<endl; } //多项式相加 void Add(Poly &pa,Poly &pb) { LNode *p,*q,*r,*qd; p=pa->next; q=pb->next; r=pa; //当p和q同时不为空时,进行循环 while(p!=pa&&q!=pb) { if(p->data.exp<q->data.exp) { //p的指数小于q的指数 r->next=p; r=p;p=p->next; } else if(p->data.exp>q->data.exp) { //p的指数大于q的指数 r->next=q; r=q;q=q->next; } else { //p的指数等于q的指数 p->data.coef=p->data.coef+q->data.coef; if(p->data.coef!=0) { //系数不为0,将p移向下一个结点 r->next=p; r=p;p=p->next; } else { //系数为0,删除p结点 qd=p;p=p->next; delete qd; } qd=q; q=q->next; delete qd; } } if(p!=pa) r->next=p; //链表pa中还有结点未遍历完 else { //链表pb中还有结点未遍历完 while(q!=pb) { r->next=q; r=q;q=q->next; } r->next=pa; } qd=q; delete qd; } ```

LinkList locate_LinkList(LinkList H,char key[]) { LinkList p = H->next; while(p != NULL){ if(strcmp(p->data.name,key)==0){ return p; } else{ p=p->next; } } return 0; }/*Get_LinkList*/ Status ListInsert(LinkList &H,int i,ElemType e) { LinkList p,s,r; p = H->next; int count = 1; if(i == 1){ p=(LinkList)malloc(sizeof(LNode)); strcpy(p->data.name,e.name); strcpy(p->data.symptom,e.symptom); p->next = H->next; H->next = p; } else{ while(p!=NULL){ count++; if(count == i){ s=(LinkList)malloc(sizeof(LNode)); strcpy(s->data.name,e.name); strcpy(s->data.symptom,e.symptom); s->next = p->next; p->next = s; } else{ p=p->next; } } } }给这段代码加注释

好的,以下是对该段代码的注释: ``` LinkList locate_LinkList(LinkList H, char key[]) { LinkList p = H->next; // 定义指针p指向链表的第一个结点 while (p != NULL) { // 当p不为空时,执行循环体 if (strcmp(p->data.name, key) == 0) { // 如果p结点的name域与key相等,返回p结点 return p; } else { // 否则,指针p指向下一个结点 p = p->next; } } return 0; // 遍历完链表,未找到符合条件的结点,返回0 } /* Get_LinkList */ Status ListInsert(LinkList &H, int i, ElemType e) { LinkList p, s, r; p = H->next; // 指针p指向链表的第一个结点 int count = 1; // 计数器count初始化为1 if (i == 1) { // 如果插入位置为1,则在链表头插入结点 p = (LinkList)malloc(sizeof(LNode)); // 申请新结点空间 strcpy(p->data.name, e.name); // 将e的name域复制到新结点的name域 strcpy(p->data.symptom, e.symptom); // 将e的symptom域复制到新结点的symptom域 p->next = H->next; // 新结点的next指针指向链表的第一个结点 H->next = p; // 链表头指针指向新结点 } else { // 否则,在链表的第i个位置插入新结点 while (p != NULL) { // 当p不为空时,执行循环体 count++; // 计数器加1 if (count == i) { // 如果计数器等于i,则在此处插入新结点 s = (LinkList)malloc(sizeof(LNode)); // 申请新结点空间 strcpy(s->data.name, e.name); // 将e的name域复制到新结点的name域 strcpy(s->data.symptom, e.symptom); // 将e的symptom域复制到新结点的symptom域 s->next = p->next; // 新结点的next指针指向p的下一个结点 p->next = s; // p的next指针指向新结点 } else { // 否则,指针p指向下一个结点 p = p->next; } } } } ```

相关推荐

解析这段代码 #include <stdio.h> #include <stdlib.h> typedef struct LNode{ int data1; int data2; struct LNode *next; }LNode,*Linklist; int Compare(int a,int b); //比较一元多项式的系数函数 void Attach(int a1,int a2,Linklist *Prear); //链表连接函数 void Print (Linklist L); Linklist Creat() //建表 { Linklist L,r; L=(Linklist)malloc(sizeof(Linklist)); L->next=NULL; r=L; int i,j; printf("请输入系数和指数,以空格隔开,以00结束!\n"); scanf("%d %d",&i,&j); while(i!=0&&j!=0) { Linklist p; p=(Linklist)malloc(sizeof(Linklist)); p->data1=i; p->data2=j; r->next=p; r=p; scanf("%d %d",&i,&j); } r->next=NULL; return L; } Linklist Add(Linklist P,Linklist Q) { LNode *rear,*L; rear=(Linklist)malloc(sizeof(Linklist)); L=rear; int sum; P=P->next; Q=Q->next; while(P&&Q) { switch(Compare(P->data2,Q->data2)) { case 1: Attach(Q->data1,Q->data2,&rear); Q=Q->next; break; case -1: Attach(P->data1,P->data2,&rear); P=P->next; break; case 0: sum = P->data1 + Q->data1; if(sum) Attach(sum,P->data2,&rear); P=P->next; Q=Q->next; break; } } for(P;P!=NULL;P=P->next) //没有比较完的P或Q Attach(P->data1,P->data2,&rear); for(Q;Q!=NULL;Q=Q->next) Attach(Q->data1,Q->data2,&rear); rear->next=NULL; return L; } void Print(Linklist L) { if(!L) printf("xxxx"); Linklist p; p=L->next; printf("相加结果为:\n"); while(p!=NULL) { printf("+%d*x^%d",p->data1,p->data2); p=p->next; } } void Attach(int a1,int a2,Linklist *c) { Linklist p; p=(Linklist)malloc(sizeof(Linklist)); p->data1=a1; p->data2=a2; p->next=NULL; (*c)->next=p; *c=p; } int Compare(int a,int b) { if(a>b) return 1; else if(a<b) return -1; else return 0; } int main() { Linklist P,Q,R; P=Creat(); Q=Creat(); R=Add(P,Q); Print(R); return 0; }

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。