将3个不同数据集绘制的ROC曲线放在一张图中R代码
时间: 2024-09-07 18:06:15 浏览: 55
R语言绘制SCI科研多指标ROC曲线源代码.zip
在R语言中,你可以使用`ggplot2`包来创建一张包含三个不同ROC曲线的图。这里是一个简单的示例,假设你已经有了三个预测模型的`pred_prob`(概率预测值)、`true_positive_rate`(真正率)和`false_positive_rate`(假正率):
```R
# 首先需要安装并加载必要的包
if (!require("ggplot2")) install.packages("ggplot2")
library(ggplot2)
library(dplyr) # 可能需要,用于数据操作
# 假设你有三个列表,每个列表包含三个变量(真实标签、预测概率和FPR)
data_sets <- list(
dataset1 = data.frame(true_label = c(TRUE, FALSE), pred_prob = c(.9, .1), fpr = c(0.05, 0.2)),
dataset2 = data.frame(true_label = c(TRUE, FALSE), pred_prob = c(.8, .2), fpr = c(0.1, 0.4)),
dataset3 = data.frame(true_label = c(TRUE, FALSE), pred_prob = c(.7, .3), fpr = c(0.15, 0.5))
)
# 将所有数据集合并成一个长格式的数据框
roc_data <- bind_rows(data_sets) %>%
gather(key = "dataset", value = "metric", -true_label, -pred_prob, -fpr)
# 创建ROC曲线图
roc_plot <- ggplot(roc_data, aes(x = fpr, y = true_positive_rate, color = dataset)) +
geom_line(aes(label = paste("Dataset:", dataset)), size = 1.5) +
geom_point(size = 4, alpha = 0.8) +
scale_color_discrete(name = "Data Set") +
theme_minimal() +
labs(
x = "False Positive Rate",
y = "True Positive Rate (Sensitivity)",
title = "ROC Curves for Multiple Data Sets",
subtitle = "Each line represents a separate ROC curve",
caption = "Click on the legend to toggle curves"
) +
guides(color = guide_legend(title.position = "top")) +
coord_cartesian(xlim = c(0, 1), ylim = c(0, 1))
# 显示图形
roc_plot
```
阅读全文