swin transformer中的SW-MSA
时间: 2023-11-02 12:58:00 浏览: 188
SW-MSA(Shifted Window Multihead Self-Attention)是Swin Transformer模型中的一种自注意力机制。在传统的Transformer中,自注意力机制(Self-Attention)对序列中的每个位置都进行全连接的计算,这导致复杂度很高。而SW-MSA则是一种计算效率更高的注意力机制。
SW-MSA通过将自注意力计算分解为多个窗口(Windows)的计算,并且使用位移矩阵(Shifted Matrix)来减少冗余计算。具体来说,SW-MSA首先将序列划分为若干个窗口,然后在每个窗口内使用标准的自注意力计算。为了处理窗口边界处的位置,SW-MSA引入了位移矩阵,将每个窗口内的位置映射到全局位置,这样可以保证窗口之间的位置信息传递。
SW-MSA相比传统的自注意力机制,在同样模型大小的情况下具有更低的计算复杂度,可以提高模型的训练和推理效率。这对于处理大规模数据和长序列非常有帮助。在Swin Transformer中,使用SW-MSA作为基础自注意力模块,帮助实现了高效且精确的视觉特征提取。
相关问题
swin-transformer中的sw-msa是什么
在Swin Transformer中,SW-MSA代表Shifted Window Multi-head Self-Attention,是一种用于处理图像数据的多头自注意力机制。Swin Transformer是一种基于注意力机制的图像分类模型,它将图像划分为一系列的局部窗口,并在每个窗口上应用SW-MSA来捕捉窗口内的特征。
SW-MSA的核心思想是通过平移窗口的方式来构建自注意力机制。传统的自注意力机制在计算注意力权重时,会考虑到窗口内所有位置的信息。而SW-MSA只关注窗口内的局部信息,通过平移窗口的方式来遍历整个图像,从而减少计算量。
具体来说,SW-MSA包含以下几个步骤:
1. 将输入图像划分为一系列的局部窗口。
2. 在每个窗口内,计算窗口内部位置之间的相对位置编码。
3. 使用相对位置编码和输入特征进行多头自注意力计算,得到窗口内的特征表示。
4. 将窗口内的特征表示进行拼接和线性变换,得到最终的特征表示。
通过使用SW-MSA,Swin Transformer能够在处理大尺寸图像时保持较低的计算复杂度,并且能够捕捉到不同窗口之间的上下文信息。
Swin Transformer 模型结构图是SMSA还是W-MSA
Swin Transformer 是一种新型的Transformer模型,它采用了分层的机制来缓解计算和存储的压力,同时保持了较高的模型精度。Swin Transformer 的核心结构是Shifted Window Self-attention (SW-MSA)模块,它是一种基于滑动窗口的多头自注意力机制。相比于传统的自注意力机制,SW-MSA在保持准确性的同时,大幅减少了计算和存储的成本。因此,Swin Transformer 的模型结构图中采用的是SW-MSA,而不是SMSA。
阅读全文