手把手教你用pytorch代码实现Transformer模型

时间: 2023-12-13 08:31:32 浏览: 51
以下是手把手教你用PyTorch代码实现Transformer模型的步骤: 1.导入必要的库和模块 ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F ``` 2.定义Transformer模型的编码器和解码器 ```python class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src = [batch size, src len] # src_mask = [batch size, 1, 1, src len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask): # src = [batch size, src len, hid dim] # src_mask = [batch size, 1, 1, src len] # self attention _src, _ = self.self_attention(src, src, src, src_mask) # dropout, residual connection and layer norm src = self.self_attn_layer_norm(src + self.dropout(_src)) # positionwise feedforward _src = self.positionwise_feedforward(src) # dropout, residual and layer norm src = self.ff_layer_norm(src + self.dropout(_src)) return src class MultiHeadAttentionLayer(nn.Module): def __init__(self, hid_dim, n_heads, dropout, device): super().__init__() assert hid_dim % n_heads == 0 self.hid_dim = hid_dim self.n_heads = n_heads self.head_dim = hid_dim // n_heads self.fc_q = nn.Linear(hid_dim, hid_dim) self.fc_k = nn.Linear(hid_dim, hid_dim) self.fc_v = nn.Linear(hid_dim, hid_dim) self.fc_o = nn.Linear(hid_dim, hid_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).to(device) def forward(self, query, key, value, mask=None): batch_size = query.shape[0] Q = self.fc_q(query) K = self.fc_k(key) V = self.fc_v(value) # Q = [batch size, query len, hid dim] # K = [batch size, key len, hid dim] # V = [batch size, value len, hid dim] Q = Q.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) K = K.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) V = V.view(batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) # Q = [batch size, n heads, query len, head dim] # K = [batch size, n heads, key len, head dim] # V = [batch size, n heads, value len, head dim] energy = torch.matmul(Q, K.permute(0, 1, 3, 2)) / self.scale # energy = [batch size, n heads, query len, key len] if mask is not None: energy = energy.masked_fill(mask == 0, -1e10) attention = torch.softmax(energy, dim=-1) # attention = [batch size, n heads, query len, key len] x = torch.matmul(self.dropout(attention), V) # x = [batch size, n heads, query len, head dim] x = x.permute(0, 2, 1, 3).contiguous() # x = [batch size, query len, n heads, head dim] x = x.view(batch_size, -1, self.hid_dim) # x = [batch size, query len, hid dim] x = self.fc_o(x) # x = [batch size, query len, hid dim] return x, attention class PositionwiseFeedforwardLayer(nn.Module): def __init__(self, hid_dim, pf_dim, dropout): super().__init__() self.fc_1 = nn.Linear(hid_dim, pf_dim) self.fc_2 = nn.Linear(pf_dim, hid_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # x = [batch size, seq len, hid dim] x = self.dropout(torch.relu(self.fc_1(x))) # x = [batch size, seq len, pf dim] x = self.fc_2(x) # x = [batch size, seq len, hid dim] return x class Decoder(nn.Module): def __init__(self, output_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(output_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([DecoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.fc_out = nn.Linear(hid_dim, output_dim) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, trg, enc_src, trg_mask, src_mask): # trg = [batch size, trg len] # enc_src = [batch size, src len, hid dim] # trg_mask = [batch size, 1, trg len, trg len] # src_mask = [batch size, 1, 1, src len] batch_size = trg.shape[0] trg_len = trg.shape[1] pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) trg = self.dropout((self.tok_embedding(trg) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: trg, attention = layer(trg, enc_src, trg_mask, src_mask) output = self.fc_out(trg) return output, attention class DecoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.enc_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.encoder_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, trg, enc_src, trg_mask, src_mask): # trg = [batch size, trg len, hid dim] # enc_src = [batch size, src len, hid dim] # trg_mask = [batch size, 1, trg len, trg len] # src_mask = [batch size, 1, 1, src len] # self attention _trg, _ = self.self_attention(trg, trg, trg, trg_mask) # dropout, residual connection and layer norm trg = self.self_attn_layer_norm(trg + self.dropout(_trg)) # encoder attention _trg, attention = self.encoder_attention(trg, enc_src, enc_src, src_mask) # dropout, residual connection and layer norm trg = self.enc_attn_layer_norm(trg + self.dropout(_trg)) # positionwise feedforward _trg = self.positionwise_feedforward(trg) # dropout, residual and layer norm trg = self.ff_layer_norm(trg + self.dropout(_trg)) return trg, attention ``` 3.定义完模型后,我们需要定义一些辅助函数,如下所示: ```python def get_pad_mask(seq, pad_idx): return (seq != pad_idx).unsqueeze(-2) def get_subsequent_mask(seq): sz_b, len_s = seq.size() subsequent_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool() return subsequent_mask def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def greedy_decode(model, src, src_mask, max_len, start_symbol): memory = model.encode(src, src_mask) ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data) for i in range(max_len - 1): out = model.decode(memory, src_mask, ys, subsequent_mask) prob = model.generator(out[:, -1]) _, next_word = torch.max(prob, dim=1) next_word = next_word.item() ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1) if next_word == 2: break return ys ``` 4.定义完辅助函数后,我们需要定义完整的Transformer模型,如下所示: ```python class Transformer(nn.Module): def __init__(self, src_vocab, trg_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device, max_length=100): super().__init__() self.device = device self.src_vocab = src_vocab self.trg_vocab = trg_vocab self.hid_dim = hid_dim self.n_layers = n_layers self.n_heads = n_heads self.pf_dim = pf_dim self.dropout = dropout self.max_length = max_length self.encoder = Encoder(src_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device) self.decoder = Decoder(trg_vocab, hid_dim, n_layers, n_heads, pf_dim, dropout, device) self.src_pad_idx = src_vocab.stoi['<pad>'] self.trg_pad_idx = trg_vocab.stoi['<pad>'] self.device = device def make_src_mask(self, src): # src = [batch size, src len] src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) # src_mask = [batch size, 1, 1, src len] return src_mask def make_trg_mask(self, trg): # trg = [batch size, trg len] trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2) # trg_pad_mask = [batch size, 1, 1, trg len] trg_len = trg.shape[1] trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=self.device)).bool() # trg_sub_mask = [trg len, trg len] trg_mask = trg_pad_mask & trg_sub_mask # trg_mask = [batch size, 1, trg len, trg len] return trg_mask def forward(self, src, trg): # src = [batch size, src len] # trg = [batch size, trg len] src_mask = self.make_src_mask(src) trg_mask = self.make_trg_mask(trg) enc_src = self.encoder(src, src_mask) output, attention = self.decoder(trg, enc_src, trg_mask, src_mask) return output, attention def encode(self, src, src_mask): # src = [batch size, src len] # src_mask = [batch size, 1, 1, src len] enc_src = self.encoder(src, src_mask) return enc_src def decode(self, memory, src_mask, trg, trg_mask): # memory = [batch size, src len, hid dim] # src_mask = [batch size, 1, 1, src len] # trg = [batch size, trg

相关推荐

最新推荐

recommend-type

PyTorch使用cpu加载模型运算方式

在PyTorch中,当你没有GPU或者CUDA支持时,仍可以使用CPU进行模型的加载和运算。本篇文章将详细介绍如何在PyTorch中利用CPU来加载和执行模型运算。 首先,当你从磁盘加载一个已经训练好的模型时,通常会使用`torch....
recommend-type

Pytorch加载部分预训练模型的参数实例

PyTorch作为一个灵活且强大的深度学习框架,提供了加载预训练模型参数的功能,这对于研究和实践非常有用。本文将详细探讨如何在PyTorch中加载部分预训练模型的参数,并通过实例进行说明。 首先,当我们使用的模型与...
recommend-type

Pytorch之保存读取模型实例

本文将详细阐述如何在PyTorch中实现模型的保存和读取。 首先,PyTorch提供了两种主要的文件格式来保存模型:`.t7` 和 `.pth`。`.t7` 文件格式源自早期的Torch7库,而`.pth` 是Python通用的 pickle 格式,用于序列化...
recommend-type

利用PyTorch实现VGG16教程

在PyTorch中实现VGG16模型,我们需要定义一个继承自`nn.Module`的类,然后在`__init__`方法中配置网络结构,最后在`forward`方法中定义前向传播过程。 以下是对提供的代码片段的详细解释: 1. `nn.Conv2d`模块用于...
recommend-type

使用anaconda安装pytorch的实现步骤

主要介绍了使用anaconda安装pytorch的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。