from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline # values to evaluate over_values = [0.3,0.4,0.5] under_values = [0.7,0.8,0.9] for o in over_values: for u in under_values: # define pipeline model = SVC() over = SMOTE(sampling_strategy=o) under = RandomUnderSampler(sampling_strategy=u) steps = [('over', over), ('under', under), ('model', model)] pipeline = Pipeline(steps=steps) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 拟合模型 pipeline.fit(X_train, y_train) 显示The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio.该如何修改
时间: 2024-04-12 12:30:07 浏览: 142
BP.zip_K._Sampling networks_系统辨识
5星 · 资源好评率100%
在您的代码中,出现了警告信息"The specified ratio required to remove samples from the minority class while trying to generate new samples. Please increase the ratio." 这是因为在使用`RandomUnderSampler`进行欠采样时,您指定的`sampling_strategy`参数的值可能过小,导致无法满足要求的欠采样比例。
要解决这个问题,您可以尝试增加`sampling_strategy`参数的值。根据警告信息的建议,您可以尝试逐步增加欠采样比例,直到满足要求。
在您的代码中,尝试将欠采样比例逐步增加,例如:
```python
under_values = [0.7, 0.8, 0.9]
```
您可以根据具体情况调整这些值,并观察警告是否消失。如果警告仍然存在,您可能需要进一步增加欠采样比例,直到满足要求。
请注意,根据您的数据集和需求,可能需要根据实际情况调整欠采样比例的取值范围。
阅读全文