bilstm和lstm代码区别
时间: 2024-05-02 18:15:40 浏览: 187
BiLSTM和LSTM是两种常用的循环神经网络(RNN)模型,它们在处理序列数据时具有一定的差异。下面是它们的代码区别:
1. LSTM(长短期记忆网络)代码示例:
```python
import torch
import torch.nn as nn
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
2. BiLSTM(双向长短期记忆网络)代码示例:
```python
import torch
import torch.nn as nn
class BiLSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(BiLSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bilstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_size * 2, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(x.device)
out, _ = self.bilstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
上述代码中,LSTMModel是一个单向LSTM模型,而BiLSTMModel是一个双向LSTM模型。它们的区别在于BiLSTMModel中的LSTM层是双向的,即同时考虑了正向和反向的序列信息。在代码中,双向LSTM的隐藏状态和细胞状态的维度是单向LSTM的两倍,并且在最后的全连接层中,使用了双向LSTM的隐藏状态进行预测。
阅读全文