flink从clickhouse读数

时间: 2023-07-25 21:04:08 浏览: 31
Flink可以通过ClickHouse的连接器来读取数据。在读取数据时,可以使用Flink的Table API或DataStream API来实现。使用Table API时,可以通过创建一个ClickHouseTableSource来定义要读取的表和查询条件。然后,可以使用TableEnvironment的executeSql方法执行查询并将结果作为Table返回。使用DataStream API时,可以使用ClickHouse的JDBC驱动程序来建立与ClickHouse的连接,并使用JDBCInputFormat来读取数据。可以根据需要选择适合的API和方法来读取ClickHouse中的数据。\[1\] #### 引用[.reference_title] - *1* *2* *3* [流计算 Oceanus | 巧用 Flink 构建高性能 ClickHouse 实时数仓](https://blog.csdn.net/cloudbigdata/article/details/122206252)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

### 回答1: Flink是一个高效、可靠、易用的分布式流处理系统,而ClickHouse则是一个面向列的分布式关系数据库管理系统。Flink Connector ClickHouse是将这两个系统结合起来,实现Flink与ClickHouse之间的无缝连接。 Flink Connector ClickHouse提供了一个数据源和Sink的功能,它能够让Flink通过ClickHouse来存储和查询数据。这个功能在实时的大数据处理中非常重要,因为数据量很大,需要高效的存储和查询。通过使用这个Connector,我们可以加速数据处理效率,提高实时数据分析的准确性。 Flink Connector ClickHouse还支持多种数据格式的转换和传输,包括JSON和Avro等。这个Connector还提供了一些配置属性,可以让用户对其进行自定义的设置,以满足特定的需求。例如,我们可以设置ClickHouse的集群节点和端口,以及一些其他的参数,来满足我们的需求。 总之,Flink Connector ClickHouse是一个非常有用的工具,可以让我们更加方便地将Flink和ClickHouse结合起来,实现高效的数据处理和分析。它为企业提供了实时数据处理、分析和存储的完整解决方案,大大地提升了数据处理效率和准确性,是一款值得使用的工具。 ### 回答2: Flink Connector ClickHouse是Apache Flink的一种连接器,用于与ClickHouse分布式数据库进行交互。ClickHouse是一种以列为基础的分布式关系型数据库,具有高性能和可扩展性,并可用于快速的实时数据分析和处理。 Flink Connector ClickHouse可以通过简单的代码配置快速集成到Flink项目中,从而实现数据在Flink和ClickHouse之间的高效传输和转换。使用该连接器,可以实现流式数据的实时写入与查询操作,同时支持数据批处理,数据源和数据接收器等功能。 在使用Flink Connector ClickHouse时,需要注意ClickHouse的数据模型和表格结构,以及Flink的输入输出格式和数据类型转换。同时,还需关注连接器的性能和可靠性,以确保数据的准确和一致性。 总之,Flink Connector ClickHouse是一种强大、高效、可靠的连接器,可以帮助开发人员实现Flink与ClickHouse之间的数据流转换和处理,从而加速实时数据分析和处理的速度、降低成本、提高效率。 ### 回答3: Flink是一个分布式实时流计算引擎,ClickHouse是一个开源列存储数据库。Flink Connector ClickHouse是Flink提供的一个模块,用于将数据从Flink发送到ClickHouse中,实现数据在实时流处理过程中的存储和查询。 Flink Connector ClickHouse的优点包括: 1. 低延迟:Flink Connector ClickHouse能够实时处理流数据,并快速存储到ClickHouse中,从而实现低延迟的数据查询和分析。 2. 高性能:Flink Connector ClickHouse使用了ClickHouse的列存储技术,能够高效地存储和查询大规模数据集,提高了数据处理的效率。 3. 可扩展性:Flink Connector ClickHouse支持集群部署,可以随时根据数据量的增长对集群进行扩展,提高了系统的可扩展性和稳定性。 4. 灵活性:Flink Connector ClickHouse提供多种数据源和格式的支持,可以将不同来源的数据统一处理,并转换为ClickHouse支持的数据格式。 总之,Flink Connector ClickHouse是Flink生态系统中非常重要的一个组件,它帮助实现了实时流处理中数据的存储和查询,提高了数据处理的效率和可靠性。
flink是一种流处理框架,clickhouse是一种列式数据库。它们可以一起使用,以实现高效的实时数据处理和分析。 首先,flink支持和clickhouse集成,可以通过flink的clickhouse-connectors来读取和写入clickhouse的数据。这样,我们可以将flink作为数据处理引擎,从不同的数据源获取数据,并将处理后的结果写入clickhouse进行存储。 flink和clickhouse的结合可以带来以下好处: 1. 实时数据处理:flink具有低延迟和高吞吐量的特点,可以实时处理来自不同数据源的数据,并将结果写入clickhouse。这样,我们可以在实时或接近实时的情况下对数据进行处理和分析,以实现实时的业务需求。 2. 高效的存储和查询:clickhouse是一种专注于分析的列式数据库,具有高性能的存储和查询能力。通过将flink的处理结果写入clickhouse,我们可以充分利用clickhouse的优势,高效地存储和查询大量的实时和历史数据。 3. 多样化的数据处理能力:flink提供了丰富的操作符和函数,可以对数据进行转换、聚合、计算等各种操作。同时,clickhouse也提供了强大的查询语言和函数,可以进行复杂的分析和报表生成。将flink和clickhouse结合使用,可以实现对数据的多样化处理和分析需求。 总而言之,flink和clickhouse的结合可以提供高效的实时数据处理和分析能力。它们可以帮助我们满足实时业务需求,并对大量数据进行高效地存储和查询。这对于各种数据密集型应用和场景来说都非常有价值。
通过使用 Flink 提供的标准化 Source 和 Sink API,您可以轻松地将 Flink 连接到 ClickHouse 数据库。您需要使用特定的驱动程序包,例如 flink-connector-clickhouse-22.07.11.jar。这个驱动包可以帮助您在 Flink 中操作 ClickHouse 数据库。通过使用 Flink,您可以实现流式数据的高效动态 JOIN,并将实时的关联数据写入 ClickHouse,以供应用层后续的分析和查询。这样,您可以充分利用 ClickHouse 引擎的强大性能来解决海量数据分析的问题。因此,使用 Flink 连接 ClickHouse 可以帮助您构建一个强大的数据处理和分析平台。123 #### 引用[.reference_title] - *1* *3* [流计算 Oceanus | 巧用 Flink 构建高性能 ClickHouse 实时数仓](https://blog.csdn.net/cloudbigdata/article/details/122206252)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [flink13.2 操作clickhouse 所需要的jar 包](https://download.csdn.net/download/wudonglianga/86501399)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
您好!下面是一个简单的示例,演示如何使用 Apache Flink 将数据写入 ClickHouse 数据库。 首先,您需要确保已经安装了 Apache Flink 和 ClickHouse,并且已经设置好了它们的环境。 接下来,您需要在 Flink 作业中引入 ClickHouse 的依赖。在 pom.xml 文件中添加以下依赖项: xml <dependencies> ... <dependency> <groupId>ru.yandex.clickhouse</groupId> <artifactId>clickhouse-jdbc</artifactId> <version>0.3.1</version> </dependency> </dependencies> 然后,您可以编写一个 Flink 作业,将数据写入 ClickHouse。以下是一个简单的示例: java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSink; import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSinkFunction; import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSinkRequestBuilder; import org.apache.flink.streaming.connectors.clickhouse.common.ClickHouseTableInfo; import org.apache.flink.streaming.connectors.clickhouse.common.ClickHouseTypeInfo; public class FlinkClickHouseDemo { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 设置并行度 env.setParallelism(1); // 创建数据流 DataStream<String> dataStream = env.fromElements("data1", "data2", "data3"); // 将数据流转换为 ClickHouseSinkFunction ClickHouseSinkFunction<String> clickHouseSinkFunction = new ClickHouseSinkFunction<String>() { @Override public ClickHouseSinkRequestBuilder getClickHouseRequestBuilder(String element) { ClickHouseTableInfo tableInfo = new ClickHouseTableInfo("your_table", new String[]{"column1"}, new ClickHouseTypeInfo[]{ClickHouseTypeInfo.StringTypeInfo}); return new ClickHouseSinkRequestBuilder(tableInfo).setData(element); } }; // 创建 ClickHouseSink ClickHouseSink<String> clickHouseSink = new ClickHouseSink<>("jdbc:clickhouse://your_clickhouse_server:8123/default", clickHouseSinkFunction); // 将数据写入 ClickHouse dataStream.addSink(clickHouseSink); // 执行作业 env.execute("Flink ClickHouse Demo"); } } 请确保将 "your_table"、"column1"、"your_clickhouse_server" 替换为实际的表名、列名和 ClickHouse 服务器地址。 这只是一个简单的示例,您可以根据实际需求进行更复杂的数据处理和写入操作。 希望这个示例对您有所帮助!如有任何问题,请随时提问。
可以使用 Flink 的 JDBC Sink 将数据写入 ClickHouse 数据库。具体步骤如下: 1. 在 pom.xml 中添加 ClickHouse JDBC 驱动的依赖: xml <dependency> <groupId>ru.yandex.clickhouse</groupId> <artifactId>clickhouse-jdbc</artifactId> <version>0.3.0</version> </dependency> 2. 在 Flink 程序中创建 ClickHouse JDBC Sink: java import java.sql.PreparedStatement; import java.sql.SQLException; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.functions.sink.RichSinkFunction; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import ru.yandex.clickhouse.ClickHouseConnection; import ru.yandex.clickhouse.ClickHouseDataSource; public class ClickHouseSink extends RichSinkFunction<String> { private static final long serialVersionUID = 1L; private static final Logger LOG = LoggerFactory.getLogger(ClickHouseSink.class); private ClickHouseConnection connection; private PreparedStatement statement; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); // 初始化 ClickHouse 连接 ClickHouseDataSource dataSource = new ClickHouseDataSource("jdbc:clickhouse://<clickhouse-host>:<clickhouse-port>/<clickhouse-database>"); connection = dataSource.getConnection(); statement = connection.prepareStatement("INSERT INTO <clickhouse-table> (col1, col2, ...) VALUES (?, ?, ...)"); } @Override public void invoke(String value, Context context) throws Exception { String[] fields = value.split(","); // 设置 PreparedStatement 的参数 statement.setString(1, fields[0]); statement.setInt(2, Integer.parseInt(fields[1])); ... // 执行插入操作 statement.executeUpdate(); } @Override public void close() throws Exception { super.close(); // 关闭 ClickHouse 连接 if (statement != null) { statement.close(); } if (connection != null) { connection.close(); } } } 3. 在 Flink 程序中使用 ClickHouse JDBC Sink 输出数据: java DataStream<String> dataStream = ... // 获取数据流 dataStream.addSink(new ClickHouseSink()); 其中 <clickhouse-host>、<clickhouse-port>、<clickhouse-database> 和 <clickhouse-table> 分别表示 ClickHouse 数据库的主机名、端口号、数据库名称和数据表名称。在执行插入操作时,需要根据实际情况设置 PreparedStatement 的参数。
Kafka、Flink 和 ClickHouse 是现代数据处理中使用最广泛的技术之一。Kafka 是分布式流处理平台,Flink 是开源流处理框架,ClickHouse 是列式数据库。这三个技术的结合可以实现端到端的一致性,从而提高数据处理的效率和准确性。 Kafka 提供了高性能的消息传输和存储功能,可以实现数据的实时传输和持久化存储。Flink 可以通过连接 Kafka 实现流数据流的处理和计算。ClickHouse 则可以作为数据仓库或存储层,提供高效的数据查询和分析。 在使用这三个技术时,需要注意端到端的一致性,以确保数据的准确性和可靠性。具体而言,需要注意以下几点: 1. 数据格式的一致性:在 Kafka、Flink 和 ClickHouse 中使用相同的数据格式,以确保数据传输和处理的一致性。 2. 数据清洗和转换的一致性:在数据流转换和清洗时,需要保持一致的逻辑和规则,以确保数据的一致性和准确性。 3. 数据处理和存储的一致性:在使用 Flink 和 ClickHouse 进行数据处理和存储时,需要保持一致的配置和参数设置,以确保数据的一致性和可靠性。 4. 数据监控和管理的一致性:在数据处理过程中,需要对数据进行监控和管理,以确保数据的完整性和可靠性。 综上所述,Kafka、Flink 和 ClickHouse 的结合可以实现端到端的一致性,从而提高数据处理的效率和准确性。在使用这三个技术时,需要注意数据格式、数据清洗和转换、数据处理和存储、数据监控和管理等方面的一致性。
flink clickhouse 实战 .pdf 是一本介绍使用 Flink 和 ClickHouse 进行实时数据处理和分析的实战指南。Flink 是一个流处理框架,而 ClickHouse 是一个面向分析的列式数据库。该指南旨在帮助读者了解如何使用这两个工具来构建强大的实时数据处理和分析应用。 首先,该指南将介绍 Flink 和 ClickHouse 的基本概念和架构。读者将了解到 Flink 是如何处理数据流和事件,并进行实时计算和转换的。同时,他们还将学习到 ClickHouse 是如何存储和查询大规模数据的。 接下来,指南将介绍如何使用 Flink 连接到 ClickHouse,并将数据流导入到 ClickHouse 中。读者将学习到如何配置 Flink 的 ClickHouse 连接并定义数据流的读取和写入操作。 然后,该指南将展示如何使用 Flink 进行实时数据处理和转换,以及如何将处理后的结果写入 ClickHouse。读者将学习到如何使用 Flink 的转换操作对数据流进行过滤、映射和聚合,并将计算结果写入 ClickHouse 数据库。 此外,指南还将教读者如何使用 Flink 和 ClickHouse 进行复杂的数据分析和查询。读者将学习到如何使用 Flink 的窗口操作和时间属性来进行时间窗口的计算和分组,以及如何利用 ClickHouse 的强大查询功能来获取需要的数据。 最后,该指南还将提供一些实际应用场景和案例,帮助读者更好地理解如何在真实的项目中使用 Flink 和 ClickHouse。通过实践实例的分析,读者将学会如何处理和分析不同类型和规模的数据,并利用 Flink 和 ClickHouse 提供的功能来实现自己的实时数据处理和分析应用。 总之,flink clickhouse 实战 .pdf 是一本全面介绍如何使用 Flink 和 ClickHouse 实现实时数据处理和分析的实战指南。通过阅读该指南,读者将获得一个全面的视角,了解如何使用这两个工具来构建高效、可靠的实时数据处理和分析应用。
Flink ClickHouse Sink用于将Flink流式计算的结果写入ClickHouse数据库。Flink是一种流式处理引擎,而ClickHouse是一种用于大规模数据分析的列式数据库。Flink ClickHouse Sink的主要作用是实时地将Flink的计算结果持久化到ClickHouse以供后续的数据分析和查询。 Flink ClickHouse Sink的原理是通过连接ClickHouse数据库的接口,将计算结果以流的形式写入到ClickHouse的表中。它支持将数据写入到ClickHouse的单个表,也可以将数据根据某个字段的值进行分区写入到多个表中。这样的设计可以在处理大规模数据时提高写入性能,同时保证数据的一致性和完整性。 使用Flink ClickHouse Sink需要进行一些配置和参数的设置。首先,需要指定ClickHouse数据库的连接信息,包括数据库的地址、端口、用户名和密码等。然后,需要选择要写入的表以及字段的映射关系。最后,还可以设置一些写入数据的一致性和容错性的相关参数。 Flink ClickHouse Sink的优点是高性能和低延迟,它可以实时地将计算结果写入到ClickHouse数据库,方便后续的数据分析和查询。同时,它也支持数据的批量写入和分区写入,可以更好地利用ClickHouse的列式存储结构和分布式计算能力。 总之,Flink ClickHouse Sink是一个重要的组件,可以将Flink流式计算的结果持久化到ClickHouse数据库中,为后续的数据分析和查询提供支持。它的高性能和低延迟使得实时数据处理变得更加高效和可靠。
### 回答1: 我可以给你一些建议来帮助你使用Flink SQL将数据写入ClickHouse。首先,你可以使用Flink SQL访问和处理数据,然后将处理后的数据写入ClickHouse。其次,你还可以使用Flink SQL提供的支持,将数据从其他数据源加载到ClickHouse中。最后,你可以使用Flink SQL的查询功能,从ClickHouse中查询数据。 ### 回答2: Flink SQL是Apache Flink的一种语言接口,用于使用SQL语句来处理和分析流式数据。而ClickHouse是一个快速、可扩展的列式数据库管理系统,专注于在线分析处理(OLAP)领域。 首先,要在Flink中将数据写入ClickHouse,需要安装并配置好Flink和ClickHouse。确保Flink集群和ClickHouse实例可以互相通信。 然后,可以通过以下步骤将数据从Flink写入ClickHouse: 1. 创建一个Flink Table,并指定要写入的目标表格。可以使用类似于以下代码的方式创建一个表: sql CREATE TABLE clickhouse_table ( id INT, name STRING, age INT ) WITH ( 'connector' = 'clickhouse', 'url' = 'clickhouse://localhost:8123', 'table-name' = 'target_table', 'username' = 'your_username', 'password' = 'your_password' ); 2. 在Flink任务中,将数据流转换为一个表,并将表注册为一个临时视图。可以使用类似于以下代码的方式将数据流转换为一个表: java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env); Table sourceTable = tEnv.fromDataStream(dataStream, "id, name, age"); tEnv.createTemporaryView("source_view", sourceTable); 3. 在Flink任务中,使用INSERT INTO语句将数据从临时视图写入目标表。可以使用类似于以下代码的方式将数据写入ClickHouse: java tEnv.executeSql("INSERT INTO clickhouse_table SELECT id, name, age FROM source_view"); 4. 启动Flink任务并观察数据是否成功写入ClickHouse。可以使用Flink的日志或ClickHouse的查询语句来验证数据是否被正确写入。 总体而言,通过Flink SQL写入ClickHouse需要完成以下几个步骤:创建目标表、将数据流转换为表、注册视图、使用INSERT INTO语句将数据写入目标表。这样就可以将数据从Flink流式处理引擎写入到ClickHouse数据库中。 ### 回答3: Flink SQL是Apache Flink的一种查询语言,用于在Flink中执行SQL查询和操作。而ClickHouse是一种开源的分布式列式数据库,具有高性能和可伸缩性。因此,我们可以使用Flink SQL将数据写入ClickHouse。 在Flink中写入ClickHouse的过程如下: 1. 首先,我们需要在Flink的应用程序中引入相应的依赖,包括Flink SQL和ClickHouse的连接驱动程序。 2. 然后,在Flink应用程序中配置连接到ClickHouse的相关信息,如ClickHouse的地址、端口号、用户名和密码等。 3. 接下来,我们可以使用Flink SQL语句创建一个输出表,指定将数据写入ClickHouse的目标表和字段映射关系。 4. 在Flink应用程序中,我们可以通过编写SQL查询语句来读取需要的数据,并将结果写入到之前定义的输出表中。 5. 最后,通过运行Flink应用程序,Flink会根据SQL语句从数据流中读取数据,并将其写入到ClickHouse中。 综上所述,使用Flink SQL写入ClickHouse的过程可以简化进行数据处理和分析的流程,并享受Flink和ClickHouse各自的优势。这种方式也提供了灵活性和可扩展性,可以满足大规模数据处理和分析的需求。

最新推荐

2023年全球聚甘油行业总体规模.docx

2023年全球聚甘油行业总体规模.docx

java web Session 详解

java web Session 详解

超声波雷达驱动(Elmos524.03&amp;Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS

Python单选题库(2).docx

Python单选题库(2) Python单选题库(2)全文共19页,当前为第1页。Python单选题库(2)全文共19页,当前为第1页。Python单选题库 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库(2)全文共19页,当前为第1页。 Python单选题库 一、python语法基础 1、Python 3.x 版本的保留字总数是 A.27 B.29 C.33 D.16 2.以下选项中,不是Python 语言保留字的是 A while B pass C do D except 3.关于Python 程序格式框架,以下选项中描述错误的是 A Python 语言不采用严格的"缩进"来表明程序的格式框架 B Python 单层缩进代码属于之前最邻近的一行非缩进代码,多层缩进代码根据缩进关系决定所属范围 C Python 语言的缩进可以采用Tab 键实现 D 判断、循环、函数等语法形式能够通过缩进包含一批Python 代码,进而表达对应的语义 4.下列选项中不符合Python语言变量命名规则的是 A TempStr B I C 3_1 D _AI 5.以下选项中

利用脑信号提高阅读理解的信息检索模型探索

380∗→利用脑信号更好地理解人类阅读理解叶紫怡1、谢晓辉1、刘益群1、王志宏1、陈雪松1、张敏1、马少平11北京国家研究中心人工智能研究所计算机科学与技术系清华大学信息科学与技术学院,中国北京yeziyi1998@gmail.com,xiexh_thu@163.com,yiqunliu@tsinghua.edu.cn,wangzhh629@mail.tsinghua.edu.cn,,chenxuesong1128@163.com,z-m@tsinghua.edu.cn, msp@tsinghua.edu.cn摘要阅读理解是一个复杂的认知过程,涉及到人脑的多种活动。然而,人们对阅读理解过程中大脑的活动以及这些认知活动如何影响信息提取过程知之甚少此外,随着脑成像技术(如脑电图(EEG))的进步,可以几乎实时地收集大脑信号,并探索是否可以将其用作反馈,以促进信息获取性能。在本文中,我们精心设计了一个基于实验室的用户研究,以调查在阅读理解过程中的大脑活动。我们的研究结果表明,不同类型�