nn.AvgPool2d(kernel_size=3, stride=1, padding=1)
时间: 2023-10-05 10:12:53 浏览: 168
`nn.AvgPool2d(kernel_size=3, stride=1, padding=1)` 是一个平均池化层,用于二维输入数据(如图片)。它的作用是将输入的特征图按照指定的参数进行平均池化操作。
- `kernel_size=3` 表示池化窗口大小为 3x3,即每次从输入中取 3x3 的区域进行池化操作。
- `stride=1` 表示池化窗口的滑动步长为 1,即每次滑动 1 个单位进行下一次池化操作。
- `padding=1` 表示在输入特征图的边界周围填充 1 个像素,以保证输出特征图的尺寸与输入特征图相同。
池化操作的目的是降低特征图的尺寸,减少参数数量,并提取图像的主要特征。平均池化层会将池化窗口内的数值求平均得到池化后的数值,并作为输出的特征图。这样可以通过保留图像的平均值来减少噪声的影响,并且可以保持图像中物体的大致形状和结构。
相关问题
定义ResNet18模型 class ResNet18(nn.Module): def init(self): super(ResNet18, self).init() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.layer1 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64) ) self.layer2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(128), ) self.layer3 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(256), ) self.layer4 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(inplace=True), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(512), ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) + x x = self.layer2(x) + x x = self.layer3(x) + x x = self.layer4(x) + x x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x
这段代码定义了一个名为 ResNet18 的模型,它是一个继承自 nn.Module 的子类。让我逐行解读这些代码:
```python
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = nn.Sequential(
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64)
)
self.layer2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(128),
)
self.layer3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
)
self.layer4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(512),
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 10)
```
- `ResNet18(nn.Module)`:定义了一个名为 ResNet18 的类,它继承自 nn.Module。
- `def __init__(self):`:定义类的初始化方法。
- `super(ResNet18, self).__init__()`:调用父类的初始化方法,确保父类的属性被正确初始化。
- `self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)`:定义了一个卷积层,输入通道数为3(RGB图像),输出通道数为64,卷积核大小为3x3,步长为1,填充为1,不使用偏置。
- `self.bn1 = nn.BatchNorm2d(64)`:定义了一个批归一化层,对输入的64个通道进行归一化。
- `self.relu = nn.ReLU(inplace=True)`:定义了一个 ReLU 激活函数,inplace=True 表示原地操作,节省内存。
- `self.layer1`、`self.layer2`、`self.layer3`、`self.layer4`:定义了4个残差块,每个残差块包含一系列的卷积层和批归一化层。
- `self.avgpool = nn.AdaptiveAvgPool2d((1, 1))`:定义了一个自适应平均池化层,将输入的特征图大小自适应地池化为大小为1x1。
- `self.fc = nn.Linear(512, 10)`:定义了一个全连接层,将输入特征的维度从512降至10。
```python
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x) + x
x = self.layer2(x) + x
x = self.layer3(x) + x
x = self.layer4(x) + x
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
- `def forward(self, x):`:定义了前向传播的方法。
- `x = self.conv1(x)`:将输入 `x` 通过卷积层 `self.conv1` 进行卷积操作。
- `x = self.bn1(x)`:将卷积后的结果 `x` 通过批归一化层 `self.bn1` 进行归一化。
- `x = self.relu(x)`:将归一化后的结果 `x` 通过 ReLU 激活函数进行激活。
- `x = self.layer1(x) + x`:将 `x` 与 `self.layer1(x)` 相加,实现残差连接。
- `x = self.layer2(x) + x`、`x = self.layer3(x) + x`、`x = self.layer4(x) + x`:依次将 `x` 与 `self.layer2(x)`、`self.layer3(x)`、`self.layer4(x)` 相加,实现残差连接。
- `x = self.avgpool(x)`:将输入 `x` 通过自适应平均池化层 `self.avgpool` 进行池化操作。
- `x = x.view(x.size(0), -1)`:将池化后的结果 `x` 展平成一维向量。
- `x = self.fc(x)`:将展平后的结果 `x` 通过全连接层 `self.fc` 进行线性变换。
- `return x`:返回前向传播的结果。
这段代码定义了一个包含卷积层、批归一化层、残差块和全连接层的 ResNet18 模型,并实现了前向传播方法。
将下列代码改写成伪代码:class AlexNet(nn.Module): def __init__(self, num_classes=3): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x
定义类 AlexNet,继承 nn.Module 类:
定义 __init__ 方法,传入参数 self 和 num_classes=3:
调用父类 nn.Module 的 __init__ 方法:
定义属性 features,值为 nn.Sequential 实例,包含以下层:
卷积层 nn.Conv2d,输入通道数为 3,输出通道数为 64,核大小为 11,步长为 4,填充为 2
激活函数层 nn.ReLU,inplace 参数为 True
最大池化层 nn.MaxPool2d,核大小为 3,步长为 2
卷积层 nn.Conv2d,输入通道数为 64,输出通道数为 192,核大小为 5,填充为 2
激活函数层 nn.ReLU,inplace 参数为 True
最大池化层 nn.MaxPool2d,核大小为 3,步长为 2
卷积层 nn.Conv2d,输入通道数为 192,输出通道数为 384,核大小为 3,填充为 1
激活函数层 nn.ReLU,inplace 参数为 True
卷积层 nn.Conv2d,输入通道数为 384,输出通道数为 256,核大小为 3,填充为 1
激活函数层 nn.ReLU,inplace 参数为 True
卷积层 nn.Conv2d,输入通道数为 256,输出通道数为 256,核大小为 3,填充为 1
激活函数层 nn.ReLU,inplace 参数为 True
最大池化层 nn.MaxPool2d,核大小为 3,步长为 2
定义属性 avgpool,值为 nn.AdaptiveAvgPool2d 实例,输出大小为 (6, 6)
定义属性 classifier,值为 nn.Sequential 实例,包含以下层:
Dropout 层 nn.Dropout
全连接层 nn.Linear,输入大小为 256 * 6 * 6,输出大小为 4096
激活函数层 nn.ReLU,inplace 参数为 True
Dropout 层 nn.Dropout
全连接层 nn.Linear,输入大小为 4096,输出大小为 4096
激活函数层 nn.ReLU,inplace 参数为 True
全连接层 nn.Linear,输入大小为 4096,输出大小为 num_classes
定义 forward 方法,传入参数 self 和 x:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
返回 x
阅读全文
相关推荐

















