import torch from torch import nn import d2l net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(9216, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10)),RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x4096 and 9216x4096),如何调整参数
时间: 2023-08-22 10:05:10 浏览: 84
这个错误是由于 nn.Linear(9216, 4096) 和前面一些卷积层的输出形状不兼容,导致无法进行矩阵乘法运算。具体来说,nn.Linear(9216, 4096) 的输入形状是 (batch_size, 9216),而前面一些卷积层的输出形状可能是 (batch_size, h, w, c),其中 h, w, c 分别表示高度、宽度和通道数,这样的形状无法直接与 nn.Linear(9216, 4096) 进行矩阵乘法运算。
要解决这个问题,你可以在 nn.Linear(9216, 4096) 之前添加一层 nn.Flatten(),将前面卷积层的输出形状展平成二维形状。具体来说,你可以将代码修改为如下所示:
```python
import torch
from torch import nn
import d2l
net = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(9216, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 10)
)
```
希望这可以帮助你解决问题!
阅读全文