import torch from torch import nn import d2l net = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool2d(kernel_size=2, stride=2), nn.Flatten(), nn.Linear(9216, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(4096, 10)),X = torch.randn((2, 3, 32, 32),dtype=torch.float32) for layer in net: X=layer(X) print(layer.__class__.__name__,'output shape:\t',X.shape),RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x4096 and 9216x4096),如何调整参数
时间: 2023-08-22 22:05:53 浏览: 153
这个错误提示显示矩阵乘积的维度不匹配,因此需要调整参数使得维度匹配。具体来说,需要调整线性层的输入和输出大小。在这个网络中,最后一个卷积层的输出大小为 256x4x4=4096,因此第一个线性层的输入大小应该是 4096。而最后一个线性层的输出大小应该是类别数量,这里是 10。因此可以将第一个线性层的输出大小改为 4096,将最后一个线性层的输入大小改为 4096,即可解决这个问题。代码如下:
```
net = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096), nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096, 10)
)
X = torch.randn((2, 3, 32, 32), dtype=torch.float32)
for layer in net:
X = layer(X)
print(layer.__class__.__name__, 'output shape:\t', X.shape)
```
调整参数后,运行这段代码可以看到输出的形状和网络结构都是正确的。
阅读全文